Classification of Product Images in Different Color Models with Customized Kernel for Support Vector Machine

S. A. Oyewole, O. Olugbara, Emmanuel Adetiba, T. Nepal
{"title":"Classification of Product Images in Different Color Models with Customized Kernel for Support Vector Machine","authors":"S. A. Oyewole, O. Olugbara, Emmanuel Adetiba, T. Nepal","doi":"10.1109/AIMS.2015.33","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is widely recognized as a potent data mining technique for solving supervised learning problems. The technique has practical applications in many domains such as e-commerce product classification. However, data sets of large sizes in this application domain often present a negative repercussion for SVM coverage because its training complexity is highly dependent on input size. Moreover, a single kernel may not adequately produce an optimal division between product classes, thereby inhibiting its performance. The literature recommends using multiple kernels to achieve flexibility in the applications of SVM. In addition, color features of product images have been found to improve classification performance of a learning technique, but choosing the right color model is particularly challenging because different color models have varying properties. In this paper, we propose color image classification framework that integrates linear and radial basis function (LaRBF) kernels for SVM. Experiments were performed in five different color models to validate the performance of SVM based LaRBF in classifying 100 classes of e-commerce product images obtained from the PI 100 Microsoft corpus. Classification accuracy of 83.5% was realized with the LaRBF in RGB color model, which is an improvement over an existing method.","PeriodicalId":121874,"journal":{"name":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS.2015.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Support Vector Machine (SVM) is widely recognized as a potent data mining technique for solving supervised learning problems. The technique has practical applications in many domains such as e-commerce product classification. However, data sets of large sizes in this application domain often present a negative repercussion for SVM coverage because its training complexity is highly dependent on input size. Moreover, a single kernel may not adequately produce an optimal division between product classes, thereby inhibiting its performance. The literature recommends using multiple kernels to achieve flexibility in the applications of SVM. In addition, color features of product images have been found to improve classification performance of a learning technique, but choosing the right color model is particularly challenging because different color models have varying properties. In this paper, we propose color image classification framework that integrates linear and radial basis function (LaRBF) kernels for SVM. Experiments were performed in five different color models to validate the performance of SVM based LaRBF in classifying 100 classes of e-commerce product images obtained from the PI 100 Microsoft corpus. Classification accuracy of 83.5% was realized with the LaRBF in RGB color model, which is an improvement over an existing method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机自定义核的不同颜色模型产品图像分类
支持向量机(SVM)被广泛认为是解决监督学习问题的一种有效的数据挖掘技术。该技术在电子商务产品分类等领域具有实际应用价值。然而,在该应用领域中,由于其训练复杂度高度依赖于输入大小,大规模的数据集往往会对支持向量机的覆盖率产生负面影响。此外,单个内核可能无法充分地在产品类别之间产生最佳划分,从而抑制了其性能。文献建议使用多核来实现支持向量机应用的灵活性。此外,已经发现产品图像的颜色特征可以提高学习技术的分类性能,但是选择正确的颜色模型特别具有挑战性,因为不同的颜色模型具有不同的属性。本文提出了一种基于线性和径向基函数(LaRBF)核的支持向量机彩色图像分类框架。在五种不同的颜色模型下进行实验,验证基于SVM的LaRBF对100类电子商务产品图像进行分类的性能。LaRBF在RGB颜色模型下实现了83.5%的分类准确率,是对现有方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real Time Detection and Tracking of Mouth Region of Single Human Face Tamper Detection in Speech Based Access Control Systems Using Watermarking A Clustering Algorithm for WSN to Optimize the Network Lifetime Using Type-2 Fuzzy Logic Model On the Trade-Off between Multi-level Security Classification Accuracy and Training Time An Improved Quality of Service Using R-AODV Protocol in MANETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1