An Access Control Method with Secret Key for Semantic Segmentation Models

Teru Nagamori, Ryota Iijima, H. Kiya
{"title":"An Access Control Method with Secret Key for Semantic Segmentation Models","authors":"Teru Nagamori, Ryota Iijima, H. Kiya","doi":"10.1109/ICMLC56445.2022.9941323","DOIUrl":null,"url":null,"abstract":"A novel method for access control with a secret key is proposed to protect models from unauthorized access in this paper. We focus on semantic segmentation models with the vision transformer (ViT), called segmentation transformer (SETR). Most existing access control methods focus on image classification tasks, or they are limited to CNNs. By using a patch embedding structure that ViT has, trained models and test images can be efficiently encrypted with a secret key, and then semantic segmentation tasks are carried out in the encrypted domain. In an experiment, the method is confirmed to provide the same accuracy as that of using plain images without any encryption to authorized users with a correct key and also to provide an extremely degraded accuracy to unauthorized users.","PeriodicalId":117829,"journal":{"name":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC56445.2022.9941323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method for access control with a secret key is proposed to protect models from unauthorized access in this paper. We focus on semantic segmentation models with the vision transformer (ViT), called segmentation transformer (SETR). Most existing access control methods focus on image classification tasks, or they are limited to CNNs. By using a patch embedding structure that ViT has, trained models and test images can be efficiently encrypted with a secret key, and then semantic segmentation tasks are carried out in the encrypted domain. In an experiment, the method is confirmed to provide the same accuracy as that of using plain images without any encryption to authorized users with a correct key and also to provide an extremely degraded accuracy to unauthorized users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义分割模型的密钥访问控制方法
本文提出了一种新的密钥访问控制方法,以防止模型被非法访问。我们重点研究了使用视觉转换器(ViT)的语义分割模型,即分割转换器(SETR)。现有的访问控制方法大多集中在图像分类任务上,或者局限于cnn。利用ViT所具有的补丁嵌入结构,对训练好的模型和测试图像进行密钥加密,然后在加密域中进行语义分割任务。实验证明,该方法对使用正确密钥的授权用户提供与使用未加密的纯图像相同的精度,但对未授权用户提供极低的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Semantic Segmentation for Vectorization of Line Drawings Based on Deep Neural Networks Real-Time Vehicle Counting by Deep-Learning Networks Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition Improvement and Evaluation of Object Shape Presentation System Using Linear Actuators Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1