Evaluating the Prevalence of SFUs in the Reliability of GPUs

J. E. R. Condia, Juan-David Guerrero-Balaguera, Edward Javier Patiño Nuñez, Robert Limas Sierra, M. Reorda
{"title":"Evaluating the Prevalence of SFUs in the Reliability of GPUs","authors":"J. E. R. Condia, Juan-David Guerrero-Balaguera, Edward Javier Patiño Nuñez, Robert Limas Sierra, M. Reorda","doi":"10.1109/ETS56758.2023.10174110","DOIUrl":null,"url":null,"abstract":"1 Currently, Graphics Processing Units (GPUs) are extensively used in several safety-critical domains to support the implementation of complex operations where reliability is a major concern. Some internal cores, such as Special Function Units (SFUs), are increasingly adopted, being crucial to achieving the necessary performance in multimedia, scientific computing, and neural network training. Unfortunately, these cores are highly unexplored in terms of their impact on reliability.In this work, we evaluate the incidence of SFUs on the reliability of GPUs when affected by soft errors. First, we analyze the impact of SFU cores on the GPU’s reliability and the running workloads. We resort to applications configured to use or not the SFU cores and evaluate the effect of soft errors by using a software-based fault injection environment (NVBITFI) in an NVIDIA Ampere GPU. Then, we focus on evaluating the impact of soft errors arising in the SFUs. A fine-grain RTL evaluation determines the soft error effects on two SFUs architectures for GPUs (’fused’ and ’modular’). The experiments use an open-source GPU (FlexGripPlus) instrumented with both SFU architectures. The results suggest that workloads using SFUs are more vulnerable to faults (from 1 up to 5 orders of magnitude for the analyzed applications). Moreover, the RTL results show that modular SFUs are less vulnerable to faults (in up to 47% for the analyzed workloads) in comparison with fused SFUs (base of commercial devices), so allowing us to identify the more robust SFU architecture.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

1 Currently, Graphics Processing Units (GPUs) are extensively used in several safety-critical domains to support the implementation of complex operations where reliability is a major concern. Some internal cores, such as Special Function Units (SFUs), are increasingly adopted, being crucial to achieving the necessary performance in multimedia, scientific computing, and neural network training. Unfortunately, these cores are highly unexplored in terms of their impact on reliability.In this work, we evaluate the incidence of SFUs on the reliability of GPUs when affected by soft errors. First, we analyze the impact of SFU cores on the GPU’s reliability and the running workloads. We resort to applications configured to use or not the SFU cores and evaluate the effect of soft errors by using a software-based fault injection environment (NVBITFI) in an NVIDIA Ampere GPU. Then, we focus on evaluating the impact of soft errors arising in the SFUs. A fine-grain RTL evaluation determines the soft error effects on two SFUs architectures for GPUs (’fused’ and ’modular’). The experiments use an open-source GPU (FlexGripPlus) instrumented with both SFU architectures. The results suggest that workloads using SFUs are more vulnerable to faults (from 1 up to 5 orders of magnitude for the analyzed applications). Moreover, the RTL results show that modular SFUs are less vulnerable to faults (in up to 47% for the analyzed workloads) in comparison with fused SFUs (base of commercial devices), so allowing us to identify the more robust SFU architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估gpu可靠性中sfu的患病率
目前,图形处理单元(gpu)广泛应用于几个安全关键领域,以支持复杂操作的实现,其中可靠性是一个主要关注的问题。一些内部内核,如特殊功能单元(sfu),被越来越多地采用,对于实现多媒体、科学计算和神经网络训练所需的性能至关重要。不幸的是,就其对可靠性的影响而言,这些核心还没有得到充分的研究。在这项工作中,我们评估了sfu在受到软错误影响时对gpu可靠性的影响。首先,我们分析了SFU内核对GPU可靠性和运行工作负载的影响。我们求助于配置为使用或不使用SFU内核的应用程序,并通过在NVIDIA安培GPU中使用基于软件的故障注入环境(NVBITFI)来评估软错误的影响。然后,我们重点评估了sfu中出现的软错误的影响。细粒度RTL评估确定了gpu的两种sfu架构(“融合”和“模块化”)的软误差影响。实验使用了一个开源GPU (FlexGripPlus),该GPU配备了两种SFU架构。结果表明,使用sfu的工作负载更容易受到故障的影响(对于所分析的应用程序,从1到5个数量级)。此外,RTL结果表明,与融合的SFU(商业设备的基础)相比,模块化SFU更不容易受到故障的影响(在分析的工作负载中高达47%),因此允许我们识别更健壮的SFU架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1