Convex hull pricing for demand response in electricity markets

N. Ito, A. Takeda, T. Namerikawa
{"title":"Convex hull pricing for demand response in electricity markets","authors":"N. Ito, A. Takeda, T. Namerikawa","doi":"10.1109/SmartGridComm.2013.6687949","DOIUrl":null,"url":null,"abstract":"Dynamic pricing (a.k.a. real-time pricing) is a method of invoking a response in demand pricing electricity at hourly (or more often) intervals. Several studies have proposed dynamic pricing models that maximize the sum of the welfares of consumers and suppliers under the condition that the supply and demand are equal. They assume that the cost functions of suppliers are convex. In practice, however, they are not convex because of the startup costs of generators. On the other hand, many studies have taken startup costs into consideration for unit commitment problems (UCPs) with a fixed demand. The Lagrange multiplier of the UCP, called convex hull pricing (CHP), minimizes the uplift payment that is disadvantageous to suppliers. However, CHP has not been used in the context of demand response. This paper presents a new dynamic pricing model based on CHP. We apply CHP approach invented for the UCP to a demand response market model, and theoretically show that the CHP is given by the Lagrange multiplier of a social welfare maximization problem whose objective function is represented as the sum of the customer's utility and supplier's profit. In addition, we solve the dual problem by using an iterative algorithm based on the subgradient method. Numerical simulations show that the prices determined by our algorithm give sufficiently small uplift payments in a realistic number of iterations.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6687949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Dynamic pricing (a.k.a. real-time pricing) is a method of invoking a response in demand pricing electricity at hourly (or more often) intervals. Several studies have proposed dynamic pricing models that maximize the sum of the welfares of consumers and suppliers under the condition that the supply and demand are equal. They assume that the cost functions of suppliers are convex. In practice, however, they are not convex because of the startup costs of generators. On the other hand, many studies have taken startup costs into consideration for unit commitment problems (UCPs) with a fixed demand. The Lagrange multiplier of the UCP, called convex hull pricing (CHP), minimizes the uplift payment that is disadvantageous to suppliers. However, CHP has not been used in the context of demand response. This paper presents a new dynamic pricing model based on CHP. We apply CHP approach invented for the UCP to a demand response market model, and theoretically show that the CHP is given by the Lagrange multiplier of a social welfare maximization problem whose objective function is represented as the sum of the customer's utility and supplier's profit. In addition, we solve the dual problem by using an iterative algorithm based on the subgradient method. Numerical simulations show that the prices determined by our algorithm give sufficiently small uplift payments in a realistic number of iterations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力市场需求响应的凸包定价
动态定价(又称实时定价)是一种调用需求响应的方法,以每小时(或更频繁)的间隔为电力定价。一些研究提出了在供给和需求相等的条件下,使消费者和供给者的福利总和最大化的动态定价模型。他们假设供应商的成本函数是凸的。然而,在实践中,由于发电机的启动成本,它们并不是凸的。另一方面,对于需求固定的机组承诺问题(unit commitment problem, ucp),很多研究都考虑了启动成本。UCP的拉格朗日乘数,称为凸壳定价(CHP),最大限度地减少对供应商不利的提升支付。然而,热电联产尚未用于需求响应。本文提出了一种新的基于热电联产的动态定价模型。我们将针对UCP所发明的CHP方法应用于需求响应市场模型,从理论上证明了CHP是由社会福利最大化问题的拉格朗日乘数给出的,该问题的目标函数表示为顾客效用和供应商利润的总和。此外,我们还利用基于次梯度法的迭代算法解决了对偶问题。数值模拟表明,在实际的迭代次数下,由我们的算法确定的价格给出了足够小的提升支付。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On measurement unit placement for smart electrical grid fault localization Delay makes a difference: Smart grid resilience under remote meter disconnect attack Online energy management strategies for base stations powered by the smart grid On phasor measurement unit placement against state and topology attacks The development of a smart grid co-simulation platform and case study on Vehicle-to-Grid voltage support application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1