{"title":"OPTIMASI GENERAL REGRESSION NEURAL NETWORK DENGAN FRUIT FLY OPTIMIZATION ALGORITHM UNTUK PREDIKSI PEMAKAIAN ARUS LISTRIK PADA PENYULANG","authors":"N. Dewi, R. Nugroho","doi":"10.33751/KOMPUTASI.V18I1.2144","DOIUrl":null,"url":null,"abstract":"Prediksi pemakaian arus listrik yang akurat pada setiap penyulang listrik sangat penting untuk memastikan distribusi listrik berjalan lancar . Hasil prediksi pemakaian listrik dapat digunakan untuk mengetahui berapa banyak produksi listrik yang harus dilakukan demi memenuhi kebutuhan listrik secara menyeluruh. Model prediksi hybrid yang menggabungkan General Regression Neural Network (GRNN) dan algoritma optimasi Fruit Fly Optimization Algorithm (FOA) diusulkan untuk menghasilkan prediksi arus listrik yang akurat dan stabil. FOA digunakan untuk mengoptimasi GRNN untuk menemukan nilai smoothing parameter optimal. Data time-series dari 5 penyulang yang mendistribusikan listrik pada 5 wilayah berbeda digunakan untuk validasi model yang diusulkan. Hasil pengujian menunjukkan bahwa model hybrid FOAGRNN menghasilkan error, ketahanan, dan generalisasi yang lebih baik dalam prediksi ini jika dibandingkan dengan model GRNN saja. Pada pengujian terhadap 5 data testing, FOAGRNN menghasilkan error prediksi lebih kecil yaitu rata-rata Root Mean Square Error sebesar 6,98411 dan Mean Absolute Error 3,44542 dibandingkan.GRNN dengan rata-rata error secara berturut-turut 7,86073 dan 4,21529. ","PeriodicalId":339673,"journal":{"name":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33751/KOMPUTASI.V18I1.2144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prediksi pemakaian arus listrik yang akurat pada setiap penyulang listrik sangat penting untuk memastikan distribusi listrik berjalan lancar . Hasil prediksi pemakaian listrik dapat digunakan untuk mengetahui berapa banyak produksi listrik yang harus dilakukan demi memenuhi kebutuhan listrik secara menyeluruh. Model prediksi hybrid yang menggabungkan General Regression Neural Network (GRNN) dan algoritma optimasi Fruit Fly Optimization Algorithm (FOA) diusulkan untuk menghasilkan prediksi arus listrik yang akurat dan stabil. FOA digunakan untuk mengoptimasi GRNN untuk menemukan nilai smoothing parameter optimal. Data time-series dari 5 penyulang yang mendistribusikan listrik pada 5 wilayah berbeda digunakan untuk validasi model yang diusulkan. Hasil pengujian menunjukkan bahwa model hybrid FOAGRNN menghasilkan error, ketahanan, dan generalisasi yang lebih baik dalam prediksi ini jika dibandingkan dengan model GRNN saja. Pada pengujian terhadap 5 data testing, FOAGRNN menghasilkan error prediksi lebih kecil yaitu rata-rata Root Mean Square Error sebesar 6,98411 dan Mean Absolute Error 3,44542 dibandingkan.GRNN dengan rata-rata error secara berturut-turut 7,86073 dan 4,21529.