{"title":"Investigating linguistic knowledge in a maximum entropy token-based language model","authors":"Jia Cui, Yi Su, Keith B. Hall, F. Jelinek","doi":"10.1109/ASRU.2007.4430104","DOIUrl":null,"url":null,"abstract":"We present a novel language model capable of incorporating various types of linguistic information as encoded in the form of a token, a (word, label)-tuple. Using tokens as hidden states, our model is effectively a hidden Markov model (HMM) producing sequences of words with trivial output distributions. The transition probabilities, however, are computed using a maximum entropy model to take advantage of potentially overlapping features. We investigated different types of labels with a wide range of linguistic implications. These models outperform Kneser-Ney smoothed n-gram models both in terms of perplexity on standard datasets and in terms of word error rate for a large vocabulary speech recognition system.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present a novel language model capable of incorporating various types of linguistic information as encoded in the form of a token, a (word, label)-tuple. Using tokens as hidden states, our model is effectively a hidden Markov model (HMM) producing sequences of words with trivial output distributions. The transition probabilities, however, are computed using a maximum entropy model to take advantage of potentially overlapping features. We investigated different types of labels with a wide range of linguistic implications. These models outperform Kneser-Ney smoothed n-gram models both in terms of perplexity on standard datasets and in terms of word error rate for a large vocabulary speech recognition system.