{"title":"Fast symbolic road marking and stop-line detection for vehicle localization","authors":"J. Suhr, H. Jung","doi":"10.1109/IVS.2015.7225684","DOIUrl":null,"url":null,"abstract":"This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
This paper proposes a fast method for detecting symbolic road markings (SRMs) and stop-lines. The proposed method efficiently restricts the search area based on the lane detection results and finds SRMs and stop-lines in a cost-effective manner. The SRM detector generates multiple SRM candidates using a top-hat filter and projection histogram and classifies their types using a histogram of oriented gradient (HOG) feature and total error rate (TER)-based classifier. The stop-line detector creates stop-line candidates via random sample consensus (RANSAC)-based parallel line pair estimation and verifies them using the HOG feature and TER-based classifier. The proposed method achieves reasonable detection rates and extremely low false positive rates along with a fast computing time.