{"title":"Permanent magnet assisted current superimposition variable flux machine","authors":"A. Kohara, K. Hirata, N. Niguchi, Y. Ohno","doi":"10.1109/INTMAG.2015.7156547","DOIUrl":null,"url":null,"abstract":"Electric and hybrid electric vehicles require traction motors that have a high power and efficiency over a wide rotation speed range . In order to satisfy these requirements and reduce the motor cost, variable flux reluctance motors (VFRMs) have been studied . Conventional VMFRMs have DC-field windings and armature windings. However, because there are two kinds of windings, the coil space factor decreases and the wiring becomes complicated . In order to solve these problems, we have developed a motor called the variable flux reluctance motor (CSVFRM) that does not have any DC-field coils, and instead uses current superimposition . In this paper, we propose a modified model whereby permanent magnets are introduced into the stator to increase the efficiency . The structure and operational principle of this machine are described and the N-T characteristics are computed by FEA.","PeriodicalId":381832,"journal":{"name":"2015 IEEE Magnetics Conference (INTERMAG)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Magnetics Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2015.7156547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Electric and hybrid electric vehicles require traction motors that have a high power and efficiency over a wide rotation speed range . In order to satisfy these requirements and reduce the motor cost, variable flux reluctance motors (VFRMs) have been studied . Conventional VMFRMs have DC-field windings and armature windings. However, because there are two kinds of windings, the coil space factor decreases and the wiring becomes complicated . In order to solve these problems, we have developed a motor called the variable flux reluctance motor (CSVFRM) that does not have any DC-field coils, and instead uses current superimposition . In this paper, we propose a modified model whereby permanent magnets are introduced into the stator to increase the efficiency . The structure and operational principle of this machine are described and the N-T characteristics are computed by FEA.