Permanent magnet assisted current superimposition variable flux machine

A. Kohara, K. Hirata, N. Niguchi, Y. Ohno
{"title":"Permanent magnet assisted current superimposition variable flux machine","authors":"A. Kohara, K. Hirata, N. Niguchi, Y. Ohno","doi":"10.1109/INTMAG.2015.7156547","DOIUrl":null,"url":null,"abstract":"Electric and hybrid electric vehicles require traction motors that have a high power and efficiency over a wide rotation speed range . In order to satisfy these requirements and reduce the motor cost, variable flux reluctance motors (VFRMs) have been studied . Conventional VMFRMs have DC-field windings and armature windings. However, because there are two kinds of windings, the coil space factor decreases and the wiring becomes complicated . In order to solve these problems, we have developed a motor called the variable flux reluctance motor (CSVFRM) that does not have any DC-field coils, and instead uses current superimposition . In this paper, we propose a modified model whereby permanent magnets are introduced into the stator to increase the efficiency . The structure and operational principle of this machine are described and the N-T characteristics are computed by FEA.","PeriodicalId":381832,"journal":{"name":"2015 IEEE Magnetics Conference (INTERMAG)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Magnetics Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2015.7156547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Electric and hybrid electric vehicles require traction motors that have a high power and efficiency over a wide rotation speed range . In order to satisfy these requirements and reduce the motor cost, variable flux reluctance motors (VFRMs) have been studied . Conventional VMFRMs have DC-field windings and armature windings. However, because there are two kinds of windings, the coil space factor decreases and the wiring becomes complicated . In order to solve these problems, we have developed a motor called the variable flux reluctance motor (CSVFRM) that does not have any DC-field coils, and instead uses current superimposition . In this paper, we propose a modified model whereby permanent magnets are introduced into the stator to increase the efficiency . The structure and operational principle of this machine are described and the N-T characteristics are computed by FEA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
永磁辅助电流叠加可变磁通机
电动和混合动力汽车要求牵引电机在大转速范围内具有高功率和高效率。为了满足这些要求并降低电机成本,人们对可变磁链磁阻电机进行了研究。传统的vmfrm有直流绕组和电枢绕组。然而,由于有两种绕组,线圈空间因素减小,布线变得复杂。为了解决这些问题,我们开发了一种称为可变磁通磁阻电机(CSVFRM)的电机,它没有任何直流磁场线圈,而是使用电流叠加。在本文中,我们提出了一种改进的模型,即在定子中引入永磁体以提高效率。介绍了该机的结构和工作原理,并用有限元法计算了其N-T特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical prediction of armature reaction field distribution in PMAC machines with different winding configuration Study of [Co/Ni]N/[Co/Pt]N-based spin valves with perpendicular magnetic anisotropy Quantitative comparison of permanent magnet linear machines for ropeless elevator Nonlinear dynamic model of a pivot ball bearing in hard disk drive including the hertzian contact force Three-dimensional fluid field and thermal field research of squirrel-cage induction motors operating in broken bar fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1