Performance Evaluation of Variable Constrained Based LMS Algorithm for Power System Harmonic Parameter Estimation

Muhammad Abbas, Zhao Qingsheng
{"title":"Performance Evaluation of Variable Constrained Based LMS Algorithm for Power System Harmonic Parameter Estimation","authors":"Muhammad Abbas, Zhao Qingsheng","doi":"10.1109/ICPRE48497.2019.9034891","DOIUrl":null,"url":null,"abstract":"This paper evaluates performance of the proposed variable constrained based Least Mean Square (VCLMS) algorithm in terms of convergence, computational time, steady state error and mean square error. The parameters of a power signal containing inter harmonics, sub harmonics and high order harmonics are estimated using the VCLMS algorithm and the results are compared with Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) algorithms for judging the comparative performance of VCLMS in presence of white Gaussian noise with a signal to noise ratio of 20dB, 30dB and 40dB. Consequently, the proposed algorithm shows faster convergence, smaller mean square error and steady state error with a slightly higher computational time as compared to the other two algorithms. All the experiments are carried out in MATLAB simulating environment.","PeriodicalId":387293,"journal":{"name":"2019 4th International Conference on Power and Renewable Energy (ICPRE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Power and Renewable Energy (ICPRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRE48497.2019.9034891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper evaluates performance of the proposed variable constrained based Least Mean Square (VCLMS) algorithm in terms of convergence, computational time, steady state error and mean square error. The parameters of a power signal containing inter harmonics, sub harmonics and high order harmonics are estimated using the VCLMS algorithm and the results are compared with Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) algorithms for judging the comparative performance of VCLMS in presence of white Gaussian noise with a signal to noise ratio of 20dB, 30dB and 40dB. Consequently, the proposed algorithm shows faster convergence, smaller mean square error and steady state error with a slightly higher computational time as compared to the other two algorithms. All the experiments are carried out in MATLAB simulating environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变约束的LMS算法在电力系统谐波参数估计中的性能评价
本文从收敛性、计算时间、稳态误差和均方误差等方面对所提出的基于变量约束的最小均方算法进行了评价。利用VCLMS算法对含有间谐波、次谐波和高阶谐波的功率信号进行参数估计,并将结果与最小均方(LMS)和归一化最小均方(NLMS)算法进行比较,在信噪比分别为20dB、30dB和40dB的高斯白噪声条件下,比较VCLMS算法的性能。因此,与其他两种算法相比,该算法具有更快的收敛速度,更小的均方误差和稳态误差,但计算时间略高。所有实验均在MATLAB仿真环境下进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Identification of Lithium-Ion Batteries Considering Current-Rate Effects on battery impedance [ICPRE 2019 Title Page] The Analysis of Insoluble Substance of in-Service Wind Turbine Gear Oil Model of Global Renewable Energy Acceptance Demand Based on MAGICC Integrated with Artificial Bee Colony Algorithm Geothermal Energy as Near-Ground Emissions Reduction Potential in the Energy and Climate Security Policy Strategy as Illustrated by the Podhale Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1