{"title":"Label, Segment, Featurize: A Cross Domain Framework for Prediction Engineering","authors":"James Max Kanter, O. Gillespie, K. Veeramachaneni","doi":"10.1109/DSAA.2016.54","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce \"prediction engineering\" as a formal step in the predictive modeling process. We define a generalizable 3 part framework — Label, Segment, Featurize (L-S-F) — to address the growing demand for predictive models. The framework provides abstractions for data scientists to customize the process to unique prediction problems. We describe how to apply the L-S-F framework to characteristic problems in 2 domains and demonstrate an implementation over 5 unique prediction problems defined on a dataset of crowdfunding projects from DonorsChoose.org. The results demonstrate how the L-S-F framework complements existing tools to allow us to rapidly build and evaluate 26 distinct predictive models. L-S-F enables development of models that provide value to all parties involved (donors, teachers, and people running the platform).","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
In this paper, we introduce "prediction engineering" as a formal step in the predictive modeling process. We define a generalizable 3 part framework — Label, Segment, Featurize (L-S-F) — to address the growing demand for predictive models. The framework provides abstractions for data scientists to customize the process to unique prediction problems. We describe how to apply the L-S-F framework to characteristic problems in 2 domains and demonstrate an implementation over 5 unique prediction problems defined on a dataset of crowdfunding projects from DonorsChoose.org. The results demonstrate how the L-S-F framework complements existing tools to allow us to rapidly build and evaluate 26 distinct predictive models. L-S-F enables development of models that provide value to all parties involved (donors, teachers, and people running the platform).