Sparse Code Multiple Access Decoding Using Message-Passing Algorithm

Lathifa Rizqi Andhary, H. Nuha, T. Haryanti
{"title":"Sparse Code Multiple Access Decoding Using Message-Passing Algorithm","authors":"Lathifa Rizqi Andhary, H. Nuha, T. Haryanti","doi":"10.1109/ICoDSA55874.2022.9862831","DOIUrl":null,"url":null,"abstract":"In no time, 4G will be replaced by 5G. Furthermore, 5G still uses the Orthogonal Frequency Division Multiple Access schemes. However, Orthogonal Frequency Division Multiple Access has shortcomings in terms of massive connectivity, so a new scheme is needed to replace Orthogonal Frequency Division Multiple Access for 5G. So, this paper discusses the performance evaluation of the Sparse Code Multiple Access for 5G. In addition to the Orthogonal Frequency Division Multiple Access, a message-passing algorithm can also be used to decode Sparse Code Multiple Access messages so they can deal with large amounts of traffic. If the amount of traffic is large, it can accommodate big number of users in the use of 5G. The message-passing algorithm can meet 5G specifications, so it is suitable for 5G use. The performance of Sparse Code Multiple Access will confirm its usability for the 5G system. So, the message-passing algorithm can detect the user information on Sparse Code Multiple Access, to increasing complexity and to find bit error rate in the algorithm. This paper uses the message-passing algorithm to test the bit error rate on six types of codebooks. From all the codebooks, the codebook with smallest bit error rate is best codebook to choose for Sparse Code Multiple Access.","PeriodicalId":339135,"journal":{"name":"2022 International Conference on Data Science and Its Applications (ICoDSA)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Data Science and Its Applications (ICoDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDSA55874.2022.9862831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In no time, 4G will be replaced by 5G. Furthermore, 5G still uses the Orthogonal Frequency Division Multiple Access schemes. However, Orthogonal Frequency Division Multiple Access has shortcomings in terms of massive connectivity, so a new scheme is needed to replace Orthogonal Frequency Division Multiple Access for 5G. So, this paper discusses the performance evaluation of the Sparse Code Multiple Access for 5G. In addition to the Orthogonal Frequency Division Multiple Access, a message-passing algorithm can also be used to decode Sparse Code Multiple Access messages so they can deal with large amounts of traffic. If the amount of traffic is large, it can accommodate big number of users in the use of 5G. The message-passing algorithm can meet 5G specifications, so it is suitable for 5G use. The performance of Sparse Code Multiple Access will confirm its usability for the 5G system. So, the message-passing algorithm can detect the user information on Sparse Code Multiple Access, to increasing complexity and to find bit error rate in the algorithm. This paper uses the message-passing algorithm to test the bit error rate on six types of codebooks. From all the codebooks, the codebook with smallest bit error rate is best codebook to choose for Sparse Code Multiple Access.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于消息传递算法的稀疏码多址译码
很快,4G就会被5G取代。此外,5G仍然使用正交频分多址方案。然而,正交频分多址在海量连接方面存在不足,因此5G需要一种新的方案来取代正交频分多址。为此,本文对5G稀疏码多址的性能评价进行了探讨。除了正交频分多址外,还可以使用消息传递算法对稀疏码多址消息进行解码,使其能够处理大量流量。如果流量大,则可以容纳大量用户使用5G。消息传递算法满足5G规范,适合5G使用。稀疏码多址的性能将证实其在5G系统中的可用性。因此,消息传递算法可以检测稀疏码多址下的用户信息,从而增加了算法的复杂度和查找误码率。本文采用消息传递算法对六种码本进行误码率测试。在所有码本中,选择误码率最小的码本是稀疏码多址的最佳码本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Model of Student Academic Performance in Private Higher Education Institution (Case in Undergraduate Management Program) Electronic Nose and Neural Network Algorithm for Multiclass Classification of Meat Quality What Affects User Satisfaction of Payroll Information Systems? Feature Expansion with Word2Vec for Topic Classification with Gradient Boosted Decision Tree on Twitter Wave Forecast using Bidirectional GRU and GRU Method Case Study in Pangandaran, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1