A hybrid evolutionary algorithm for Multi-FPGA systems design

J. Hidalgo, J. Lanchares, Aitor Ibarra, R. Hermida
{"title":"A hybrid evolutionary algorithm for Multi-FPGA systems design","authors":"J. Hidalgo, J. Lanchares, Aitor Ibarra, R. Hermida","doi":"10.1109/DSD.2002.1115352","DOIUrl":null,"url":null,"abstract":"Genetic algorithms (GAs) are stochastic optimization heuristics in which searches in solution space are carried out by imitating the population genetics stated in Darwin's theory of evolution. The compact genetic algorithm (cGA) does not manage a population of solutions but only mimics its existence. The combination of genetic and local search heuristic has been shown to be an effective approach to solve some optimization problems more efficiently than with a single GA or a cGA. multi-FPGA systems design flow has three major tasks: partitioning, placement and routing. In this paper we present a new hybrid algorithm that exploits a cGA in order to generate high quality partitioning and placement solutions and, by means of a local search heuristic, improves the solutions obtained using a cGA or a GA.","PeriodicalId":330609,"journal":{"name":"Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2002.1115352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Genetic algorithms (GAs) are stochastic optimization heuristics in which searches in solution space are carried out by imitating the population genetics stated in Darwin's theory of evolution. The compact genetic algorithm (cGA) does not manage a population of solutions but only mimics its existence. The combination of genetic and local search heuristic has been shown to be an effective approach to solve some optimization problems more efficiently than with a single GA or a cGA. multi-FPGA systems design flow has three major tasks: partitioning, placement and routing. In this paper we present a new hybrid algorithm that exploits a cGA in order to generate high quality partitioning and placement solutions and, by means of a local search heuristic, improves the solutions obtained using a cGA or a GA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种多fpga系统设计的混合进化算法
遗传算法(GAs)是一种随机优化启发式算法,通过模仿达尔文进化论中所述的群体遗传学,在解空间中进行搜索。紧凑遗传算法(cGA)不管理解群,而只是模拟解群的存在。遗传启发式算法与局部搜索启发式算法相结合是一种比单一遗传算法或遗传算法更有效地解决某些优化问题的有效方法。多fpga系统设计流程有三个主要任务:划分、放置和路由。本文提出了一种新的混合算法,该算法利用cGA来生成高质量的分区和放置解,并通过局部搜索启发式来改进使用cGA或GA获得的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault latencies of concurrent checking FSMs On the fundamental design gap in terabit per second packet switching Bit-level allocation of multiple-precision specifications Improving mW/MHz ratio in FPGAs pipelined designs Hardware implementation of a memory allocator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1