An Analog Implementation of FitzHugh-Nagumo Neuron Model for Spiking Neural Networks

Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud
{"title":"An Analog Implementation of FitzHugh-Nagumo Neuron Model for Spiking Neural Networks","authors":"Raunak M. Borwankar, Anurag Desai, M. Haider, Ludwig Reinhold, Y. Massoud","doi":"10.1109/NEWCAS.2018.8585554","DOIUrl":null,"url":null,"abstract":"A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"2023 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A low power analog implementation of FitzHugh-Nagumo (FHN) neuron model is presented in this paper for large scale spiking neural network and neuromorphic algorithm realization. The FHN neuron model is designed using $\log $-domain low pass filters and translinear multipliers to emulate voltage-like variable with cubic non-linearity and a recovery variable. Various spiking behaviors observed in biological neurons are demonstrated in simulation results. The neuron model was designed in 45 nm CMOS process which has 1.6 nW and 40 nW power consumption at rest and for a single spiking event respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尖峰神经网络中FitzHugh-Nagumo神经元模型的模拟实现
本文提出了一种基于FitzHugh-Nagumo (FHN)神经元模型的低功耗模拟实现,用于大规模峰值神经网络和神经形态算法的实现。FHN神经元模型采用$\log $域低通滤波器和跨线性乘法器来模拟具有三次非线性和恢复变量的类电压变量。仿真结果证明了在生物神经元中观察到的各种尖峰行为。神经元模型采用45 nm CMOS工艺设计,静息和单次峰值功耗分别为1.6 nW和40 nW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shearlet based Stacked Convolutional Network for Multiclass Diagnosis of Alzheimer’s Disease using the Florbetapir PET Amyloid Imaging Data A New CAD Tool for Energy Optimization of Diagonal Motion Mode of Attached Electrode Triboelectric Nanogenerators Non-Linear Sequential SVM Classifier of Epileptic Seizures NEWCAS 2018 Keynote An 11.2nW, 0.45V PVT-tolerant Pulse-width Modulated Temperature Sensor in 65 nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1