Motion Tracklet Oriented 6-DoF Inertial Tracking Using Commodity Smartphones

Peize Li, Chris Xiaoxuan Lu
{"title":"Motion Tracklet Oriented 6-DoF Inertial Tracking Using Commodity Smartphones","authors":"Peize Li, Chris Xiaoxuan Lu","doi":"10.1145/3485730.3494116","DOIUrl":null,"url":null,"abstract":"Motion tracklets are the basic fragments of the track followed by a moving object and constitute various everyday motion behavior. An accurate estimation of motion tracklets in 3-D space can enable a wide range of applications, ranging from human computer interaction to medical rehabilitation. This paper presents a novel dataset for accurate 6-DoF motion tracklet estimation with the inertial sensors on commodity smartphones. The dataset consists of around 100 minutes of handheld motion with 3 predominant types of motion track-lets and accurate ground truth using the Vicon systems. With the presented dataset, we further benchmarked the trajectory estimation using a lightweight neural odometry model, showcasing how the dataset can be used while providing quantitative performance for downstream tasks. Our dataset, toolkit and source code available at https://github.com/MAPS-Lab/smartphone-tracking-dataset.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3494116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motion tracklets are the basic fragments of the track followed by a moving object and constitute various everyday motion behavior. An accurate estimation of motion tracklets in 3-D space can enable a wide range of applications, ranging from human computer interaction to medical rehabilitation. This paper presents a novel dataset for accurate 6-DoF motion tracklet estimation with the inertial sensors on commodity smartphones. The dataset consists of around 100 minutes of handheld motion with 3 predominant types of motion track-lets and accurate ground truth using the Vicon systems. With the presented dataset, we further benchmarked the trajectory estimation using a lightweight neural odometry model, showcasing how the dataset can be used while providing quantitative performance for downstream tasks. Our dataset, toolkit and source code available at https://github.com/MAPS-Lab/smartphone-tracking-dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向运动轨迹的六自由度惯性跟踪应用于商用智能手机
运动轨迹是运动物体轨迹的基本片段,构成了各种日常运动行为。在三维空间中对运动轨迹的精确估计可以实现广泛的应用,从人机交互到医疗康复。本文提出了一种基于智能手机惯性传感器的六自由度运动轨迹估计新数据集。该数据集包括大约100分钟的手持运动,其中有3种主要类型的运动轨迹,以及使用Vicon系统的精确地面真相。利用所提供的数据集,我们使用轻量级神经里程计模型进一步对轨迹估计进行基准测试,展示了如何使用数据集,同时为下游任务提供定量性能。我们的数据集、工具包和源代码可在https://github.com/MAPS-Lab/smartphone-tracking-dataset上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1