An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images

Zhipeng Deng, Lin Lei, Hao Sun, H. Zou, Shilin Zhou, Juanping Zhao
{"title":"An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images","authors":"Zhipeng Deng, Lin Lei, Hao Sun, H. Zou, Shilin Zhou, Juanping Zhao","doi":"10.1109/RSIP.2017.7958800","DOIUrl":null,"url":null,"abstract":"Faster Region based convolutional neural networks (FRCN) has shown great success in object detection in recent years. However, its performance will degrade on densely packed objects in real remote sensing applications. To address this problem, an enhanced deep CNN based method is developed in this paper. Following the common pipeline of “CNN feature extraction + region proposal + Region classification”, our method is primarily based on the latest Residual Networks (ResNets) and consists of two sub-networks: an object proposal network and an object detection network. For detecting densely packed objects, the output of multi-scale layers are combined together to enhance the resolution of the feature maps. Our method is trained on the VHR-10 data set with limited samples and successfully tested on large-scale google earth images, such as aircraft boneyard or tank farm, containing a substantial number of densely packed objects.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Faster Region based convolutional neural networks (FRCN) has shown great success in object detection in recent years. However, its performance will degrade on densely packed objects in real remote sensing applications. To address this problem, an enhanced deep CNN based method is developed in this paper. Following the common pipeline of “CNN feature extraction + region proposal + Region classification”, our method is primarily based on the latest Residual Networks (ResNets) and consists of two sub-networks: an object proposal network and an object detection network. For detecting densely packed objects, the output of multi-scale layers are combined together to enhance the resolution of the feature maps. Our method is trained on the VHR-10 data set with limited samples and successfully tested on large-scale google earth images, such as aircraft boneyard or tank farm, containing a substantial number of densely packed objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络的遥感图像密集目标检测
近年来,基于快速区域的卷积神经网络(FRCN)在目标检测方面取得了巨大的成功。然而,在实际遥感应用中,其在密集物体上的性能会下降。为了解决这一问题,本文提出了一种基于深度CNN的增强方法。我们的方法遵循“CNN特征提取+区域建议+区域分类”的常用流程,主要基于最新的残差网络(ResNets),由两个子网络组成:目标建议网络和目标检测网络。为了检测密集堆积的物体,将多尺度层的输出组合在一起,以提高特征图的分辨率。我们的方法在样本有限的VHR-10数据集上进行了训练,并成功地在包含大量密集物体的大规模google earth图像上进行了测试,例如飞机墓地或油罐场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm of remote sensing image matching based on corner-point A weakly supervised road extraction approach via deep convolutional nets based image segmentation Hyperspectral image classification based on spectral-spatial feature extraction An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images The development of deep learning in synthetic aperture radar imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1