Behavior-based Outlier Detection for Indoor Environment

Shinjin Kang, Sookyun Kim
{"title":"Behavior-based Outlier Detection for Indoor Environment","authors":"Shinjin Kang, Sookyun Kim","doi":"10.1109/CSCI51800.2020.00135","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a system that can detect the space outlier utilization of residents in indoor environment at low cost. Our system facilitates autonomous data collection from mobile app logs and the Google app server and generates a high-dimensional dataset required to detect outlier behaviors. For this, we used density-based clustering algorithm with t-distributed stochastic neighbor embedding (t-SNE). Our system enables easy acquisition of large volumes of data required for outlier detection. Our methodology can assist spatial analysis for indoor environments housing residents and help reduce the cost of space utilization feedback.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a system that can detect the space outlier utilization of residents in indoor environment at low cost. Our system facilitates autonomous data collection from mobile app logs and the Google app server and generates a high-dimensional dataset required to detect outlier behaviors. For this, we used density-based clustering algorithm with t-distributed stochastic neighbor embedding (t-SNE). Our system enables easy acquisition of large volumes of data required for outlier detection. Our methodology can assist spatial analysis for indoor environments housing residents and help reduce the cost of space utilization feedback.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于行为的室内环境异常点检测
本文介绍了一种低成本的室内环境中居民空间异常值利用检测系统。我们的系统有助于从移动应用日志和谷歌应用服务器中自动收集数据,并生成检测异常行为所需的高维数据集。为此,我们使用基于密度的聚类算法与t分布随机邻居嵌入(t-SNE)。我们的系统可以轻松获取离群值检测所需的大量数据。我们的方法可以帮助住户对室内环境进行空间分析,并有助于减少空间利用反馈的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Success of Cancer Gene Data Analysis of 169 Microarrays for Medical Diagnosis Artificial Intelligence in Computerized Adaptive Testing Evidence for Monitoring the User and Computing the User’s trust Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks An open-source application built with R programming language for clinical laboratories to innovate process of excellence and overcome the uncertain outlook during the global healthcare crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1