Analysis and Visualization of Proteomic Data by Fuzzy Labeled Self-Organizing Maps

Frank-Michael Schleif, T. Elssner, M. Kostrzewa, T. Villmann, B. Hammer
{"title":"Analysis and Visualization of Proteomic Data by Fuzzy Labeled Self-Organizing Maps","authors":"Frank-Michael Schleif, T. Elssner, M. Kostrzewa, T. Villmann, B. Hammer","doi":"10.1109/CBMS.2006.44","DOIUrl":null,"url":null,"abstract":"We extend the self-organizing map in the variant as proposed by Heskes to a supervised fuzzy classification method. This leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. Further, the integration of labeling into the location of prototypes in a self-organizing map leads to a visualization of those parts of the data relevant for the classification. The method is incorporated in a clinical proteomics toolkit dedicated for biomarker search which allows the necessary preprocessing and further data analysis with additional visualizations","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We extend the self-organizing map in the variant as proposed by Heskes to a supervised fuzzy classification method. This leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. Further, the integration of labeling into the location of prototypes in a self-organizing map leads to a visualization of those parts of the data relevant for the classification. The method is incorporated in a clinical proteomics toolkit dedicated for biomarker search which allows the necessary preprocessing and further data analysis with additional visualizations
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊标记自组织图谱的蛋白质组学数据分析与可视化
我们将Heskes提出的变体中的自组织映射扩展为监督模糊分类方法。这导致了一个鲁棒分类器,其中有效的学习模糊标记或部分矛盾的数据是可能的。此外,将标签集成到自组织地图中的原型位置中,可以将与分类相关的数据部分可视化。该方法被纳入临床蛋白质组学工具包,专门用于生物标志物搜索,允许必要的预处理和进一步的数据分析与额外的可视化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probing the Use and Value of Video for Multi-Disciplinary Medical Teams in Teleconference Application of Maximum Entropy-Based Image Resizing to Biomedical Imaging Measurement of Relative Brain Atrophy in Neurodegenerative Diseases Enhancing Wireless Patient Monitoring by Integrating Stored and Live Patient Information Using Visual Interpretation of Small Ensembles in Microarray Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1