Day-Level Forecasting of COVID-19 Transmission in India Using Variants of Supervised LSTM Models: Modeling and Recommendations

E. Ramanujam, C. Santhiya, S. Padmavathi
{"title":"Day-Level Forecasting of COVID-19 Transmission in India Using Variants of Supervised LSTM Models: Modeling and Recommendations","authors":"E. Ramanujam, C. Santhiya, S. Padmavathi","doi":"10.4018/jitr.299376","DOIUrl":null,"url":null,"abstract":"The novel Corona virus SARS-CoV-2 has started with strange new pneumonia of unknown cause in Wuhan city, Hubei province of China. On March 11, 2020, the World Health Organization declared the COVID-19 outbreak as a pandemic. Due to this pandemic situation, the countries all over the world suffered from economic and psychological stress. To analyze the growth of this pandemic, this paper proposes a supervised LSTM model and its variants to predict the infectious cases in India using a publicly available dataset from John Hopkins University. Experimentation has been carried out using various models and window hyper-parameters to predict the infectious rate ahead of a week, 2 weeks, 3 weeks and a month. The prediction results infer that, every individual in India has to be safe at home and to follow the regulations provided by ICMR and the Indian Government to control and prevent others from this complicated epidemic.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.299376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The novel Corona virus SARS-CoV-2 has started with strange new pneumonia of unknown cause in Wuhan city, Hubei province of China. On March 11, 2020, the World Health Organization declared the COVID-19 outbreak as a pandemic. Due to this pandemic situation, the countries all over the world suffered from economic and psychological stress. To analyze the growth of this pandemic, this paper proposes a supervised LSTM model and its variants to predict the infectious cases in India using a publicly available dataset from John Hopkins University. Experimentation has been carried out using various models and window hyper-parameters to predict the infectious rate ahead of a week, 2 weeks, 3 weeks and a month. The prediction results infer that, every individual in India has to be safe at home and to follow the regulations provided by ICMR and the Indian Government to control and prevent others from this complicated epidemic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用监督LSTM模型变体对印度COVID-19传播的日水平预测:建模和建议
新型冠状病毒SARS-CoV-2在中国湖北省武汉市以不明原因的新型肺炎开始。2020年3月11日,世界卫生组织宣布新冠肺炎疫情为大流行。由于这一流行病,世界各国都遭受了经济和心理压力。为了分析这次大流行的增长,本文提出了一个监督LSTM模型及其变体,使用约翰霍普金斯大学的公开数据集来预测印度的感染病例。利用各种模型和窗口超参数进行实验,预测1周、2周、3周和1个月前的感染率。预测结果表明,在印度的每个人都必须在家中保持安全,并遵守ICMR和印度政府提供的规定,以控制和防止他人感染这一复杂的流行病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1