Adsorption of Malachite Green from Aqueous Solution by Nanozeolite Clinoptilolite: Equilibrium, Kinetic and Thermodynamic Studies

R. Heydari, M. Khavarpour
{"title":"Adsorption of Malachite Green from Aqueous Solution by Nanozeolite Clinoptilolite: Equilibrium, Kinetic and Thermodynamic Studies","authors":"R. Heydari, M. Khavarpour","doi":"10.5829/ije.2018.31.01a.01","DOIUrl":null,"url":null,"abstract":"The object of present study was to examine the adsorption potential of nanozeolite clinoptilolite (CP) for the removal of malachite green (MG) from aqueous phase in a batch equilibrium system. SEM, EDX, XRF, XRD and FT-IR techniques of characterization of zeolite were applied. The effects of initial pH solution, adsorbent dose, temperature, contact time and initial MG concentration on adsorption were evaluated. Adsorption experiments were conducted at initial concentrations in the range of 10–50 mg/L and temperatures at 25, 30 and 35°C. MG adsorption uptake was found to increase with an increase in contact time, initial MG concentration and solution temperature. The adsorption equilibrium data revealed the best fit with Koble-Corrigan model. The kinetics of MG on adsorbent followed the pseudo-second-order model. In addition, the assessment of kinetic data depicted that the adsorption rate was controlled by intraparticle diffusion mechanism. The negative values of standard Gibbs free energy represented the spontaneous adsorption at the stated temperature. The positive values of enthalpy and entropy changes also confirmed the increased randomness and endothermic nature of MG adsorption on nanozeolite CP adsorbent. Furthermore, the obtained activation energy showed the physical adsorption process.","PeriodicalId":416886,"journal":{"name":"International journal of engineering. Transactions A: basics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering. Transactions A: basics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5829/ije.2018.31.01a.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The object of present study was to examine the adsorption potential of nanozeolite clinoptilolite (CP) for the removal of malachite green (MG) from aqueous phase in a batch equilibrium system. SEM, EDX, XRF, XRD and FT-IR techniques of characterization of zeolite were applied. The effects of initial pH solution, adsorbent dose, temperature, contact time and initial MG concentration on adsorption were evaluated. Adsorption experiments were conducted at initial concentrations in the range of 10–50 mg/L and temperatures at 25, 30 and 35°C. MG adsorption uptake was found to increase with an increase in contact time, initial MG concentration and solution temperature. The adsorption equilibrium data revealed the best fit with Koble-Corrigan model. The kinetics of MG on adsorbent followed the pseudo-second-order model. In addition, the assessment of kinetic data depicted that the adsorption rate was controlled by intraparticle diffusion mechanism. The negative values of standard Gibbs free energy represented the spontaneous adsorption at the stated temperature. The positive values of enthalpy and entropy changes also confirmed the increased randomness and endothermic nature of MG adsorption on nanozeolite CP adsorbent. Furthermore, the obtained activation energy showed the physical adsorption process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斜沸石对孔雀石绿的吸附:平衡、动力学和热力学研究
研究了纳米沸石斜沸石(CP)在间歇平衡体系中对孔雀石绿(MG)的吸附性能。采用SEM、EDX、XRF、XRD、FT-IR等技术对沸石进行了表征。考察了初始pH溶液、吸附剂剂量、温度、接触时间和初始MG浓度对吸附的影响。吸附实验在初始浓度为10-50 mg/L,温度为25、30和35℃的条件下进行。MG吸附吸收率随接触时间、初始MG浓度和溶液温度的增加而增加。吸附平衡数据符合Koble-Corrigan模型。MG在吸附剂上的动力学符合准二阶模型。此外,动力学数据的评估表明吸附速率受颗粒内扩散机制控制。标准吉布斯自由能的负值表示在规定温度下的自发吸附。焓变和熵变的正值也证实了纳米沸石CP吸附剂对MG吸附的随机性和吸热性增强。此外,得到的活化能显示了物理吸附过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
A New Combination of Robust-possibilistic Mathematical Programming for Resilient Supply Chain Network under Disruptions and Uncertainty: A Real Supply Chain (RESEARCH NOTE) Composite Multi Wall Carbon Nano Tube Polydimethylsiloxane Membrane Bioreactor for Enhanced Bioethanol Production from Broomcorn Seeds Determining of Geotechnical Domain Based on Joint Density and Fault Orientation at Batu Hijau Mine,West Sumbawa-Indonesia (TECHNICAL NOTE) Bi-objective Build-to-order Supply Chain Problem with Customer Utility Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1