Investigation of evolutionary feature subset selection in multi-temporal datasets for harmful algal bloom detection

B. Gokaraju, S. Durbha, R. King, N. Younan
{"title":"Investigation of evolutionary feature subset selection in multi-temporal datasets for harmful algal bloom detection","authors":"B. Gokaraju, S. Durbha, R. King, N. Younan","doi":"10.1109/MULTI-TEMP.2011.6005070","DOIUrl":null,"url":null,"abstract":"In the present study we investigate the evolutionary feature subset selection using wrapper based genetic algorithms on Multi-temporal datasets. Feature subset selection helps in reducing the original feature dimension and also yields high performance. The evolutionary strategy attains a global optimum by reducing the computations iteratively and by traversing intelligently in the entire feature space. This method gave a very high performance improvement up to 0.97 kappa accuracy with a best reduced feature dimension for harmful algal bloom detection.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the present study we investigate the evolutionary feature subset selection using wrapper based genetic algorithms on Multi-temporal datasets. Feature subset selection helps in reducing the original feature dimension and also yields high performance. The evolutionary strategy attains a global optimum by reducing the computations iteratively and by traversing intelligently in the entire feature space. This method gave a very high performance improvement up to 0.97 kappa accuracy with a best reduced feature dimension for harmful algal bloom detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对有害藻华检测的多时相数据进化特征子集选择研究
在本研究中,我们研究了基于包装的遗传算法在多时间数据集上的进化特征子集选择。特征子集选择有助于降低原始特征维数,并提高性能。该进化策略通过迭代减少计算量和智能遍历整个特征空间来达到全局最优。该方法对有害藻华的检测精度提高到0.97 kappa,并具有最佳降维特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring a fuzzy object: The case of Lake Naivasha Greenland inland ice melt-off: Analysis of global gravity data from the GRACE satellites Effects of multitemporal scene changes on pansharpening fusion Quantification of LAI interannual anomalies by adjusting climatological patterns Analysis of LULC changes and urban expansion of the resort city of Al Ain using remote sensing and GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1