Volatility in electrical load forecasting for long-term horizon — An ARIMA-GARCH approach

S. Khuntia, Jose L. Rueda, M. A. Meijden
{"title":"Volatility in electrical load forecasting for long-term horizon — An ARIMA-GARCH approach","authors":"S. Khuntia, Jose L. Rueda, M. A. Meijden","doi":"10.1109/PMAPS.2016.7764184","DOIUrl":null,"url":null,"abstract":"Electrical load forecasting in long-term horizon of power systems plays an important role for system planning and development. Load forecast in long-term horizon is represented as time-series. Thus, it is important to check the effect of volatility in the forecasted load time-series. In short, volatility in long-term horizon affects four main actions: risk management, long-term actions, reliability, and bets on future volatility. To check the effect of volatility in load series, this paper presents a univariate time series-based load forecasting technique for long-term horizon based on data corresponding to a U.S. independent system operator. The study employs ARIMA technique to forecast electrical load, and also the analyzes the ARCH and GARCH effects on the residual time-series.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Electrical load forecasting in long-term horizon of power systems plays an important role for system planning and development. Load forecast in long-term horizon is represented as time-series. Thus, it is important to check the effect of volatility in the forecasted load time-series. In short, volatility in long-term horizon affects four main actions: risk management, long-term actions, reliability, and bets on future volatility. To check the effect of volatility in load series, this paper presents a univariate time series-based load forecasting technique for long-term horizon based on data corresponding to a U.S. independent system operator. The study employs ARIMA technique to forecast electrical load, and also the analyzes the ARCH and GARCH effects on the residual time-series.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力负荷长期预测的波动性——ARIMA-GARCH方法
电力系统长期负荷预测对系统规划和发展具有重要意义。长期负荷预测用时间序列表示。因此,在负荷预测时间序列中检查波动率的影响是很重要的。简而言之,长期波动影响四个主要行为:风险管理、长期行为、可靠性和对未来波动的押注。为了检验波动对负荷序列的影响,本文基于美国独立系统运营商的数据,提出了一种基于单变量时间序列的长期负荷预测技术。本文采用ARIMA技术对电力负荷进行预测,并分析了ARCH和GARCH对剩余时间序列的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1