{"title":"Quantum Transfer Learning Approach for Deepfake Detection","authors":"Bishwas Mishra, Abhishek Samanta","doi":"10.55011/staiqc.2022.2103","DOIUrl":null,"url":null,"abstract":"Deepfake image manipulation has achieved great attention in the previous year’s owing to brings solemn challenges from the public self-confidence. Forgery detection in face imaging has made considerable developments in detecting manipulated images. However, there is still a need for an efficient deepfake detection approach in complex background environments. This paper applies the state-of-the-art quantum transfer learning approach for classifying deepfake images from original face images. The proposed model comprises classical pre-trained ResNet-18 and quantum neural network layers that provide efficient features extraction to learn the different patterns of the deepfake face images. The proposed model is validated on a real-world deepfake dataset created using commercial software. An accuracy of 96.1 % was obtained.","PeriodicalId":231409,"journal":{"name":"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55011/staiqc.2022.2103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Deepfake image manipulation has achieved great attention in the previous year’s owing to brings solemn challenges from the public self-confidence. Forgery detection in face imaging has made considerable developments in detecting manipulated images. However, there is still a need for an efficient deepfake detection approach in complex background environments. This paper applies the state-of-the-art quantum transfer learning approach for classifying deepfake images from original face images. The proposed model comprises classical pre-trained ResNet-18 and quantum neural network layers that provide efficient features extraction to learn the different patterns of the deepfake face images. The proposed model is validated on a real-world deepfake dataset created using commercial software. An accuracy of 96.1 % was obtained.