A new privacy-preserving web metering scheme using third-party-centric analytics

Fahad Alarifi, M. Fernández
{"title":"A new privacy-preserving web metering scheme using third-party-centric analytics","authors":"Fahad Alarifi, M. Fernández","doi":"10.1109/ICCVIA.2015.7351874","DOIUrl":null,"url":null,"abstract":"It is desirable for advertising webservers to have a web metering scheme that can securely produce accurate number of unique users while preserving users' privacy. To achieve such balance between accuracy and privacy, the web metering scheme has to collect data about users in a privacy-preserving manner. If users are authenticated, it is easy to determine the number of unique visitors; however, authentication and privacy are inherently conflicting requirements. This paper proposes an analytics-based web metering scheme that improves privacy while providing “good enough” accurate results, compared to previous schemes. More precisely, we propose a generic web metering scheme to securely capture data about users in a privacy-preserving manner, and study different scenarios in which the scheme can be implemented. Each scenario is described, outlining assumptions and techniques. The scenarios and underlying techniques can be used as improvements to the privacy of existing schemes (like Google Analytics) while maintaining accurate results.","PeriodicalId":419122,"journal":{"name":"International Conference on Computer Vision and Image Analysis Applications","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision and Image Analysis Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVIA.2015.7351874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is desirable for advertising webservers to have a web metering scheme that can securely produce accurate number of unique users while preserving users' privacy. To achieve such balance between accuracy and privacy, the web metering scheme has to collect data about users in a privacy-preserving manner. If users are authenticated, it is easy to determine the number of unique visitors; however, authentication and privacy are inherently conflicting requirements. This paper proposes an analytics-based web metering scheme that improves privacy while providing “good enough” accurate results, compared to previous schemes. More precisely, we propose a generic web metering scheme to securely capture data about users in a privacy-preserving manner, and study different scenarios in which the scheme can be implemented. Each scenario is described, outlining assumptions and techniques. The scenarios and underlying techniques can be used as improvements to the privacy of existing schemes (like Google Analytics) while maintaining accurate results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个新的保护隐私的网络计量方案,使用以第三方为中心的分析
广告网站服务器希望有一个网络计量方案,可以安全地产生准确的唯一用户数量,同时保护用户的隐私。为了在准确性和隐私性之间取得平衡,网络计量方案必须以保护隐私的方式收集用户数据。如果对用户进行了身份验证,则很容易确定唯一访问者的数量;然而,身份验证和隐私本质上是相互冲突的需求。本文提出了一种基于分析的网络计量方案,与以前的方案相比,该方案在提供“足够好”的准确结果的同时提高了隐私性。更准确地说,我们提出了一种通用的web计量方案,以保护隐私的方式安全地捕获用户数据,并研究了该方案可以实现的不同场景。描述了每个场景,概述了假设和技术。场景和底层技术可用于改进现有方案(如Google Analytics)的隐私性,同时保持准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Labeling abnormalities in video based complex Human-Object Interactions by robust affordance modelling Implementation of optical correlator for face recognition applications Modeling information resources and application using ontological engineering Accurate, swift and noiseless image binarization Study with RK4 & ANOVA the location of the tumor at the smallest time for multi-images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1