Two-Phase Wakes in Adiabatic Liquid-Gas Flow Around a Cylinder

Dohwan Kim, M. Rau
{"title":"Two-Phase Wakes in Adiabatic Liquid-Gas Flow Around a Cylinder","authors":"Dohwan Kim, M. Rau","doi":"10.1115/fedsm2020-20279","DOIUrl":null,"url":null,"abstract":"\n Small tubes and fins have long been used as methods to increase surface area for convective heat transfer in single-phase flow applications. As demands for high heat transfer effectiveness has increased, implementing evaporative phase-change heat transfer in conjunction with small fins, tubes, and surface structures in advanced heat exchanger and heat sink designs has become increasingly attractive. The complex two-phase flow that results from these configurations is poorly understood, particularly in how the gas phase interacts with the flow structure of the wake created by these bluff bodies. An experimental study of liquid-gas bubbly flow around a cylinder was performed to understand these complex flow physics. A 9.5 mm diameter cylinder was installed horizontally within a vertical water channel facility. A high-speed camera captured the movement of the liquid-gas mixture around the cylinder for a range of bubble sizes. Liquid Reynolds number, calculated based on the cylinder diameter, was varied approximately from 100 to 3000. Time-averaged probability of bubble presence was calculated to characterize the cylinder wake and its effects on the bubble motion. The influence of the liquid Reynolds number, superficial air velocity, and bubble size is discussed in the context of the observed two-phase flow patterns.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Small tubes and fins have long been used as methods to increase surface area for convective heat transfer in single-phase flow applications. As demands for high heat transfer effectiveness has increased, implementing evaporative phase-change heat transfer in conjunction with small fins, tubes, and surface structures in advanced heat exchanger and heat sink designs has become increasingly attractive. The complex two-phase flow that results from these configurations is poorly understood, particularly in how the gas phase interacts with the flow structure of the wake created by these bluff bodies. An experimental study of liquid-gas bubbly flow around a cylinder was performed to understand these complex flow physics. A 9.5 mm diameter cylinder was installed horizontally within a vertical water channel facility. A high-speed camera captured the movement of the liquid-gas mixture around the cylinder for a range of bubble sizes. Liquid Reynolds number, calculated based on the cylinder diameter, was varied approximately from 100 to 3000. Time-averaged probability of bubble presence was calculated to characterize the cylinder wake and its effects on the bubble motion. The influence of the liquid Reynolds number, superficial air velocity, and bubble size is discussed in the context of the observed two-phase flow patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绝热液气绕圆柱体流动的两相尾迹
在单相流动中,小管和小翅片一直被用作增加对流换热表面积的方法。随着对高传热效率的要求的增加,在先进的热交换器和散热器设计中,结合小翅片、管和表面结构实施蒸发相变传热变得越来越有吸引力。由这些结构产生的复杂的两相流动,特别是气相如何与这些钝体产生的尾迹流动结构相互作用,人们知之甚少。为了解这些复杂的流动物理现象,对液气绕筒气泡流动进行了实验研究。一个直径9.5毫米的圆柱体水平安装在垂直水道设施内。高速摄像机捕捉到不同气泡大小的液气混合物在圆柱体周围的运动。根据圆柱体直径计算的液体雷诺数大约在100到3000之间变化。计算了气泡存在的时间平均概率,以表征圆柱尾迹及其对气泡运动的影响。在观察到的两相流型的背景下,讨论了液体雷诺数、表面空气速度和气泡尺寸的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lattice Boltzmann Method Based on Large-Eddy Simulation (LES) Used to Investigate the Unsteady Turbulent Flow on Series of Cavities Unified Assessment Approach for Courses With Simulation Component [And Professors in Hurry] Stereo-PIV Measurements of Turbulent Swirling Flow Inside a Pipe WearGP: A UQ/ML Wear Prediction Framework for Slurry Pump Impellers and Casings Optimal Control Strategy to Distribute Water Through Loop-Like Planar Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1