Optimal Control Strategy to Distribute Water Through Loop-Like Planar Networks

B. Soni, Utkarsh Aashu Mishra, A. Nayak
{"title":"Optimal Control Strategy to Distribute Water Through Loop-Like Planar Networks","authors":"B. Soni, Utkarsh Aashu Mishra, A. Nayak","doi":"10.1115/fedsm2020-20097","DOIUrl":null,"url":null,"abstract":"\n In this article, loop like planar networks formed by circular cross sectioned conduits with possibly different geometric measurements are studied to supply the required amount of isothermal water within the optimal time and through the shortest path. The flow optimization procedure is controlled by time varying pressures at nodes throughout the network for given specifications about pressure value at multiple demanding and single supply nodes. The flow governing equation is solved analytically to correlate transient flow rate and pressure and then studied using analogous electrical circuit. For each possible path between source and demand node, minimum equivalent flow impedance criterion is considered to pick the optimum path. This sets a multi-objective dynamic flow optimization algorithm and the same is executed under the assumption of fully developed and laminar flow. The optimum flow impedance can further be used to measure the pumping power as the cost of flow of a particular path. The algorithm can be extended to reduce the water wastages by controlling pressures efficiently.","PeriodicalId":333138,"journal":{"name":"Volume 2: Fluid Mechanics; Multiphase Flows","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Mechanics; Multiphase Flows","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, loop like planar networks formed by circular cross sectioned conduits with possibly different geometric measurements are studied to supply the required amount of isothermal water within the optimal time and through the shortest path. The flow optimization procedure is controlled by time varying pressures at nodes throughout the network for given specifications about pressure value at multiple demanding and single supply nodes. The flow governing equation is solved analytically to correlate transient flow rate and pressure and then studied using analogous electrical circuit. For each possible path between source and demand node, minimum equivalent flow impedance criterion is considered to pick the optimum path. This sets a multi-objective dynamic flow optimization algorithm and the same is executed under the assumption of fully developed and laminar flow. The optimum flow impedance can further be used to measure the pumping power as the cost of flow of a particular path. The algorithm can be extended to reduce the water wastages by controlling pressures efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环状平面网络配水的最优控制策略
本文研究了由可能具有不同几何尺寸的圆形截面管道组成的环状平面网络,以在最佳时间内通过最短路径提供所需的等温水。在给定多个需求节点和单个供应节点压力值的条件下,通过网络节点压力随时间的变化来控制流量优化过程。通过解析求解流量控制方程,建立瞬态流量与压力之间的关系,并利用模拟电路进行研究。对于源节点与需求节点之间的每条可能路径,采用最小等效流阻抗准则选取最优路径。建立了一种多目标动态优化算法,并在层流充分发展的假设下进行了求解。最佳流动阻抗可以进一步用于测量泵送功率作为特定路径的流动成本。该算法可以通过有效地控制压力来减少水的浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lattice Boltzmann Method Based on Large-Eddy Simulation (LES) Used to Investigate the Unsteady Turbulent Flow on Series of Cavities Unified Assessment Approach for Courses With Simulation Component [And Professors in Hurry] Stereo-PIV Measurements of Turbulent Swirling Flow Inside a Pipe WearGP: A UQ/ML Wear Prediction Framework for Slurry Pump Impellers and Casings Optimal Control Strategy to Distribute Water Through Loop-Like Planar Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1