{"title":"A New Modeling of Classical Folds in Computational Origami","authors":"T. Ida, Hidekazu Takahashi","doi":"10.4204/EPTCS.352.5","DOIUrl":null,"url":null,"abstract":"This paper shows a cut along a crease on an origami sheet makes simple modeling of popular traditional basic folds such as a squash fold in computational origami. The cut operation can be applied to other classical folds and significantly simplify their modeling and subsequent implementation in the context of computational origami.","PeriodicalId":127390,"journal":{"name":"Automated Deduction in Geometry","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Deduction in Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.352.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper shows a cut along a crease on an origami sheet makes simple modeling of popular traditional basic folds such as a squash fold in computational origami. The cut operation can be applied to other classical folds and significantly simplify their modeling and subsequent implementation in the context of computational origami.