De-Mark GAN: Removing Dense Watermark with Generative Adversarial Network

Jinlin Wu, Hailin Shi, Shu Zhang, Zhen Lei, Yang Yang, S. Li
{"title":"De-Mark GAN: Removing Dense Watermark with Generative Adversarial Network","authors":"Jinlin Wu, Hailin Shi, Shu Zhang, Zhen Lei, Yang Yang, S. Li","doi":"10.1109/ICB2018.2018.00021","DOIUrl":null,"url":null,"abstract":"This paper mainly considers the MeshFace verification problem with dense watermarks. A dense watermark often covers the crucial parts of face photo, thus degenerating the performance in the existing face verification system. The key to solving it is to preserve the ID information while removing the dense watermark. In this paper, we propose an improved GAN model, named De-mark GAN, for MeshFace verification. It consists of one generator and one global-internal discriminator. The generator is an encoderdecoder architecture with a pixel reconstruction loss and a feature loss. It maps a MeshFace photo to a representation vector, and then decodes the vector to a RGB ID photo. The succedent global-internal discriminator integrates a global discriminator and an internal discriminator with a global loss and internal loss, respectively. It can ensure the generated image quality and preserve the the ID information of recovered ID photos. Experimental results show that the verification benefits well from the recovered ID photos with high quality and our proposed De-mark GAN can achieve a competitive result in both image quality and verification.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper mainly considers the MeshFace verification problem with dense watermarks. A dense watermark often covers the crucial parts of face photo, thus degenerating the performance in the existing face verification system. The key to solving it is to preserve the ID information while removing the dense watermark. In this paper, we propose an improved GAN model, named De-mark GAN, for MeshFace verification. It consists of one generator and one global-internal discriminator. The generator is an encoderdecoder architecture with a pixel reconstruction loss and a feature loss. It maps a MeshFace photo to a representation vector, and then decodes the vector to a RGB ID photo. The succedent global-internal discriminator integrates a global discriminator and an internal discriminator with a global loss and internal loss, respectively. It can ensure the generated image quality and preserve the the ID information of recovered ID photos. Experimental results show that the verification benefits well from the recovered ID photos with high quality and our proposed De-mark GAN can achieve a competitive result in both image quality and verification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
De-Mark GAN:基于生成对抗网络的密集水印去除
本文主要研究带有密集水印的MeshFace验证问题。在现有的人脸验证系统中,密集的水印往往会覆盖人脸照片的关键部分,从而降低其性能。解决这一问题的关键是在去除密集水印的同时保留身份信息。在本文中,我们提出了一种改进的GAN模型,称为De-mark GAN,用于MeshFace验证。它由一个生成器和一个全局内部鉴别器组成。该生成器是一个具有像素重建损失和特征损失的编解码器架构。它将一张MeshFace照片映射到一个表示向量,然后将向量解码为一张RGB ID照片。后续的全局-内部鉴别器分别集成了具有全局损耗和内部损耗的全局鉴别器和内部鉴别器。它既能保证生成的图像质量,又能保留恢复后的身份证照片的身份信息。实验结果表明,我们所提出的De-mark GAN在图像质量和验证方面都取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition Two-Stream Part-Based Deep Representation for Human Attribute Recognition SSBC 2018: Sclera Segmentation Benchmarking Competition Multifactor User Authentication with In-Air-Handwriting and Hand Geometry Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1