Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition

Aditi Roy, N. Memon, J. Togelius, A. Ross
{"title":"Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition","authors":"Aditi Roy, N. Memon, J. Togelius, A. Ross","doi":"10.1109/ICB2018.2018.00017","DOIUrl":null,"url":null,"abstract":"Recent research has demonstrated the possibility of generating \"Masterprints\" that can be used by an adversary to launch a dictionary attack against a fingerprint recognition system. Masterprints are fingerprint images that fortuitously match with a large number of other fingerprints thereby compromising the security of a fingerprint-based biometric system, especially those equipped with small-sized fingerprint sensors. This work presents new methods for creating a synthetic MasterPrint dictionary that sequentially maximizes the probability of matching a large number of target fingerprints. Three techniques, namely Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Differential Evolution (DE) and Particle Swarm Optimization (PSO), are explored. Experiments carried out using a commercial fingerprint verification software, and public datasets, show that the proposed approaches performed quite well compared to the previously known MasterPrint generation methods.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Recent research has demonstrated the possibility of generating "Masterprints" that can be used by an adversary to launch a dictionary attack against a fingerprint recognition system. Masterprints are fingerprint images that fortuitously match with a large number of other fingerprints thereby compromising the security of a fingerprint-based biometric system, especially those equipped with small-sized fingerprint sensors. This work presents new methods for creating a synthetic MasterPrint dictionary that sequentially maximizes the probability of matching a large number of target fingerprints. Three techniques, namely Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Differential Evolution (DE) and Particle Swarm Optimization (PSO), are explored. Experiments carried out using a commercial fingerprint verification software, and public datasets, show that the proposed approaches performed quite well compared to the previously known MasterPrint generation methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成主指纹模板的进化生成方法:指纹识别中的字典攻击
最近的研究已经证明了生成“主指纹”的可能性,可以被对手用来对指纹识别系统发起字典攻击。“主指纹”是指偶然与大量其他指纹相匹配的指纹图像,从而危及基于指纹的生物识别系统的安全性,特别是那些配备了小型指纹传感器的系统。这项工作提出了创建合成MasterPrint字典的新方法,该字典依次最大化匹配大量目标指纹的概率。探讨了协方差矩阵自适应进化策略(CMA-ES)、差分进化(DE)和粒子群优化(PSO)三种技术。使用商业指纹验证软件和公共数据集进行的实验表明,与先前已知的MasterPrint生成方法相比,所提出的方法表现相当好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conformal Mapping of a 3D Face Representation onto a 2D Image for CNN Based Face Recognition Two-Stream Part-Based Deep Representation for Human Attribute Recognition SSBC 2018: Sclera Segmentation Benchmarking Competition Multifactor User Authentication with In-Air-Handwriting and Hand Geometry Evolutionary Methods for Generating Synthetic MasterPrint Templates: Dictionary Attack in Fingerprint Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1