Energy Efficiency in Testing and Regression Testing -- A Comparison of DVFS Techniques

Edward Y. Y. Kan
{"title":"Energy Efficiency in Testing and Regression Testing -- A Comparison of DVFS Techniques","authors":"Edward Y. Y. Kan","doi":"10.1109/QSIC.2013.21","DOIUrl":null,"url":null,"abstract":"This paper conducts a pilot study on the energy efficiency in software regression testing. Existing techniques that harness the adjustment of CPU frequencies using Dynamic Voltage and Frequency Scaling can be classified into two categories: general and application-specific. However, existing general techniques ignore execution characteristics and existing application-specific techniques require execution profiling. We propose two non-intrusive algorithms (Case Majority and Case Optimal), which exploit an insight on regression test cases to assure efficiency in modified program versions. We conduct experimentation on three medium-size real-world benchmarks over a cycle-accurate power simulator. The empirical results show that applying our proposed techniques in the context of regression testing can effectively save more energy on one benchmark, and does not suffer from lower performance on the other two benchmarks.","PeriodicalId":404921,"journal":{"name":"2013 13th International Conference on Quality Software","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th International Conference on Quality Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QSIC.2013.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper conducts a pilot study on the energy efficiency in software regression testing. Existing techniques that harness the adjustment of CPU frequencies using Dynamic Voltage and Frequency Scaling can be classified into two categories: general and application-specific. However, existing general techniques ignore execution characteristics and existing application-specific techniques require execution profiling. We propose two non-intrusive algorithms (Case Majority and Case Optimal), which exploit an insight on regression test cases to assure efficiency in modified program versions. We conduct experimentation on three medium-size real-world benchmarks over a cycle-accurate power simulator. The empirical results show that applying our proposed techniques in the context of regression testing can effectively save more energy on one benchmark, and does not suffer from lower performance on the other two benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测试中的能源效率与回归测试——DVFS技术的比较
本文对软件回归测试中的能效问题进行了初步研究。现有的利用动态电压和频率缩放来调节CPU频率的技术可以分为两类:通用技术和特定应用技术。然而,现有的通用技术忽略了执行特征,而现有的特定于应用程序的技术需要执行分析。我们提出了两种非侵入式算法(Case Majority和Case Optimal),它们利用回归测试用例的洞察力来确保修改后的程序版本的效率。我们在三个中等大小的真实世界基准上进行了周期精确功率模拟器的实验。实证结果表明,在回归测试中应用我们提出的技术可以有效地在一个基准上节省更多的能量,并且不会影响其他两个基准的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Combinatorial Testing Considerations in Designing Human-Computer Interfaces for Elderly People The ART of Divide and Conquer: An Innovative Approach to Improving the Efficiency of Adaptive Random Testing An Empirical Study of Adoption of Software Testing in Open Source Projects Supporting Reliability Modeling and Analysis for Component-Based Software Architecture: An XML-Based Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1