An efficient fault-tolerance technique for the Keyed-Hash Message Authentication Code

M. Juliato, C. Gebotys
{"title":"An efficient fault-tolerance technique for the Keyed-Hash Message Authentication Code","authors":"M. Juliato, C. Gebotys","doi":"10.1109/AERO.2010.5446669","DOIUrl":null,"url":null,"abstract":"The growing demand for secure communications has lead to the utilization of cryptographic mechanisms on-board spacecrafts. However, that it not a trivial task due to sensitivity of cryptographic primitives to bit-flips, which are commonly caused by the radiation found in space. On-board processing has mitigated single event upsets (SEUs) by employing the traditional triple modular redundancy (TMR), but that technique incurs into huge area and energy penalties. This paper introduces an efficient approach to achieve fault tolerance in data origin authentication mechanisms based on the Keyed-Hash Message Authentication Code (HMAC). The proposed scheme achieves very high resistance against SEUs while reducing implementation area requirements and energy consumption compared to TMR. Results obtained through FPGA implementation show that HMAC-SHA512 utilizes 53% less area and consumes 25% less energy compared to the traditional TMR technique. Furthermore, the memory and registers of this hardware module are respectively 386 and 1140 times more resistant against SEUs than TMR. These results are crucial for substituting TMR with more efficient strategies therefore contributing to the achievement of higher levels of security in space systems.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The growing demand for secure communications has lead to the utilization of cryptographic mechanisms on-board spacecrafts. However, that it not a trivial task due to sensitivity of cryptographic primitives to bit-flips, which are commonly caused by the radiation found in space. On-board processing has mitigated single event upsets (SEUs) by employing the traditional triple modular redundancy (TMR), but that technique incurs into huge area and energy penalties. This paper introduces an efficient approach to achieve fault tolerance in data origin authentication mechanisms based on the Keyed-Hash Message Authentication Code (HMAC). The proposed scheme achieves very high resistance against SEUs while reducing implementation area requirements and energy consumption compared to TMR. Results obtained through FPGA implementation show that HMAC-SHA512 utilizes 53% less area and consumes 25% less energy compared to the traditional TMR technique. Furthermore, the memory and registers of this hardware module are respectively 386 and 1140 times more resistant against SEUs than TMR. These results are crucial for substituting TMR with more efficient strategies therefore contributing to the achievement of higher levels of security in space systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密钥哈希消息认证码的高效容错技术
对安全通信日益增长的需求导致了在航天器上使用加密机制。然而,由于密码原语对位翻转的敏感性,这并不是一项微不足道的任务,位翻转通常是由太空中的辐射引起的。机载处理通过采用传统的三模块冗余(TMR)来减轻单事件干扰(seu),但该技术会带来巨大的面积和能量损失。介绍了一种基于密钥哈希消息认证码(HMAC)的数据源认证机制中实现容错的有效方法。与TMR相比,该方案实现了非常高的seu阻力,同时减少了实施面积要求和能耗。通过FPGA实现的结果表明,与传统的TMR技术相比,HMAC-SHA512的面积减少了53%,能耗降低了25%。此外,该硬件模块的内存和寄存器抗seu的能力分别是TMR的386倍和1140倍。这些结果对于用更有效的战略取代TMR至关重要,从而有助于在空间系统中实现更高水平的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technology challenges for the Square Kilometer Array Pathways and challenges to innovation in aerospace Mentoring: A key to longevity in Space On choosing quaternion equilibrium point in attitude stabilization Preciseness for predictability with the RealSpec real-time executable specification language
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1