STM observations of hafnium carbide thin films as a field emission material

T. Sato, M. Saida, K. Horikawa, M. Nagao, S. Kanemaru, T. Matsukawa, J. Itoh, S. Yamamoto, M. Sasaki
{"title":"STM observations of hafnium carbide thin films as a field emission material","authors":"T. Sato, M. Saida, K. Horikawa, M. Nagao, S. Kanemaru, T. Matsukawa, J. Itoh, S. Yamamoto, M. Sasaki","doi":"10.1109/IVNC.2004.1354942","DOIUrl":null,"url":null,"abstract":"We examine microscopic behaviors of work function and topography with scanning tunneling microscopy (STM). Hafnium carbide thin films were deposited on an n-type Si flat substrate by inductively coupled plasma (ICP) assisted magnetron sputtering at the argon pressure of 0.1 Pa. The surface of the films was cleaned by in-situ argon ion sputtering before STM observations. The ion current, duration and acceleration voltage were set at 3.0 /spl mu/A, 10 min, and 0.5 keV or 1.0 keV, respectively. The microscopic work function distribution was evaluated from the local tunneling barrier height (LBH) obtained with an STM apparatus. We adopted the tip-modulation method to evaluate LBH where we can obtain topograph and LBH images simultaneously. We also measured the macroscopic work function of these sample surfaces by a Kelvin probe. The work function of the 1.0 keV sputtered surface is 0.4 eV higher than that of the 0.5 keV sputtered surface.","PeriodicalId":137345,"journal":{"name":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Digest of the 17th International Vacuum Nanoelectronics Conference (IEEE Cat. No.04TH8737)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVNC.2004.1354942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine microscopic behaviors of work function and topography with scanning tunneling microscopy (STM). Hafnium carbide thin films were deposited on an n-type Si flat substrate by inductively coupled plasma (ICP) assisted magnetron sputtering at the argon pressure of 0.1 Pa. The surface of the films was cleaned by in-situ argon ion sputtering before STM observations. The ion current, duration and acceleration voltage were set at 3.0 /spl mu/A, 10 min, and 0.5 keV or 1.0 keV, respectively. The microscopic work function distribution was evaluated from the local tunneling barrier height (LBH) obtained with an STM apparatus. We adopted the tip-modulation method to evaluate LBH where we can obtain topograph and LBH images simultaneously. We also measured the macroscopic work function of these sample surfaces by a Kelvin probe. The work function of the 1.0 keV sputtered surface is 0.4 eV higher than that of the 0.5 keV sputtered surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
场发射材料碳化铪薄膜的STM观测
我们用扫描隧道显微镜(STM)研究了功函数和形貌的微观行为。在0.1 Pa的氩气压力下,采用电感耦合等离子体(ICP)辅助磁控溅射技术在n型Si平面衬底上沉积了碳化铪薄膜。在STM观察之前,用原位氩离子溅射对薄膜表面进行了清洗。离子电流、持续时间和加速电压分别设定为3.0 /spl mu/A、10 min和0.5 keV或1.0 keV。利用STM装置获得的局部隧道势垒高度(LBH)计算了微观功函数分布。我们采用尖端调制方法来评估LBH,可以同时获得地形和LBH图像。我们还用开尔文探针测量了这些样品表面的宏观功函数。1.0 keV溅射表面的功函数比0.5 keV溅射表面的功高0.4 eV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stable and high emission current from carbon nanotube paste with spin on glass Field emission from polymer flims Properties of single field emitters deduced by use of spherical Fowler-Nordheim theory X-ray generation from large area carbon-based field emitters Development of a MEMS-based gate to enhance cold-cathode electron field emission for space applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1