Taufiq Hidayat, R. Ruliana, Z. Rais, M. Botto-Tobar
{"title":"Cluster Analysis Using Ensemble ROCK Method in District/City Grouping in South Sulawesi Province based on People's Welfare Indicators","authors":"Taufiq Hidayat, R. Ruliana, Z. Rais, M. Botto-Tobar","doi":"10.35877/mathscience1761","DOIUrl":null,"url":null,"abstract":"Cluster analysis is a data mining technique used to group data based on the similarity of attributes of object data. One of the problems that are often encountered in cluster analysis is data with a mixed categorical and numerical scale. The clustering stage for mixed data using the ensemble ROCK (Robust Clustering using links) method is carried out by combining clustering outputs from categorical and numeric scale data. The method used for categorical data is the ROCK method and the method used for numerical data is the Hierarchical Agglomerative method. The best clustering method is determined based on the criteria for the ratio between the standard deviations within the group (SW) and the smallest standard deviation between groups (SB). Based on 24 observation objects in the regencies and cities of the Province of South Sulawesi, the ROCK ensemble method with a value of 0.1 produces three clusters with a ratio value of 2,27 x10-16 based on the combination of the output results of the ROCK method and the Hierarchical Agglomerative method","PeriodicalId":431947,"journal":{"name":"ARRUS Journal of Mathematics and Applied Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARRUS Journal of Mathematics and Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35877/mathscience1761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cluster analysis is a data mining technique used to group data based on the similarity of attributes of object data. One of the problems that are often encountered in cluster analysis is data with a mixed categorical and numerical scale. The clustering stage for mixed data using the ensemble ROCK (Robust Clustering using links) method is carried out by combining clustering outputs from categorical and numeric scale data. The method used for categorical data is the ROCK method and the method used for numerical data is the Hierarchical Agglomerative method. The best clustering method is determined based on the criteria for the ratio between the standard deviations within the group (SW) and the smallest standard deviation between groups (SB). Based on 24 observation objects in the regencies and cities of the Province of South Sulawesi, the ROCK ensemble method with a value of 0.1 produces three clusters with a ratio value of 2,27 x10-16 based on the combination of the output results of the ROCK method and the Hierarchical Agglomerative method