Object Detection Using Deep Convolutional Generative Adversarial Networks Embedded Single Shot Detector with Hyper-parameter Optimization

Ranjith Dinakaran, Li Zhang
{"title":"Object Detection Using Deep Convolutional Generative Adversarial Networks Embedded Single Shot Detector with Hyper-parameter Optimization","authors":"Ranjith Dinakaran, Li Zhang","doi":"10.1109/SSCI50451.2021.9659855","DOIUrl":null,"url":null,"abstract":"Itis a challenging task to identify optimal network configurations for large-scale deep neural networks with cascaded structures. In this research, we propose a hybrid end-to-end model by integrating Deep Convolutional Generative Adversarial Network (DCGAN) with Single Shot Detector (SSD), for undertaking object detection. We subsequently employ the Particle Swarm Optimization (PSO) algorithm to conduct hyperparameter identification for the DCGAN-SSD model. The detected class labels as well as salient regional features are then used as inputs for a Long Short-Term Memory (LSTM) network for image description generation. Evaluated with a video data set in the wild, the empirical results indicate the efficiency of the proposed PSO-enhanced DCGAN-SSD object detector with respect to object detection and image description generation.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Itis a challenging task to identify optimal network configurations for large-scale deep neural networks with cascaded structures. In this research, we propose a hybrid end-to-end model by integrating Deep Convolutional Generative Adversarial Network (DCGAN) with Single Shot Detector (SSD), for undertaking object detection. We subsequently employ the Particle Swarm Optimization (PSO) algorithm to conduct hyperparameter identification for the DCGAN-SSD model. The detected class labels as well as salient regional features are then used as inputs for a Long Short-Term Memory (LSTM) network for image description generation. Evaluated with a video data set in the wild, the empirical results indicate the efficiency of the proposed PSO-enhanced DCGAN-SSD object detector with respect to object detection and image description generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积生成对抗网络的超参数优化嵌入式单镜头探测器目标检测
如何识别具有级联结构的大规模深度神经网络的最优网络结构是一项具有挑战性的任务。在这项研究中,我们提出了一个混合的端到端模型,通过集成深度卷积生成对抗网络(DCGAN)和单镜头检测器(SSD)来进行目标检测。随后,我们采用粒子群优化(PSO)算法对DCGAN-SSD模型进行超参数识别。然后将检测到的类标签以及显著的区域特征用作长短期记忆(LSTM)网络的输入,用于生成图像描述。实验结果表明,pso增强的DCGAN-SSD目标检测器在目标检测和图像描述生成方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1