Semi-automatic document processing and text-recognition for digital transformation of low-resources organizations

Carlos Cuenca-Enrique, Laura Del-Río-Carazo, Emiliano Acquila-Natale, Camilo Macarron
{"title":"Semi-automatic document processing and text-recognition for digital transformation of low-resources organizations","authors":"Carlos Cuenca-Enrique, Laura Del-Río-Carazo, Emiliano Acquila-Natale, Camilo Macarron","doi":"10.23919/cisti54924.2022.9820135","DOIUrl":null,"url":null,"abstract":"The digital transformation of organizations has become critical for their survival. Smaller organizations, and especially those in developing countries, are facing bigger challenges in this process due to limited resources and lack of digital skills. One of the keys of this transformation is the digitalization of information, where optical character recognition (OCR) plays an essential role. This research analyzes current OCR tools and systems for document digitalization in low-resources organizations and presents a semi-automatic document processing and text-recognition solution that addresses their needs. The study then presents an experimental design to assess the efficiency of the tool. The results support the adequacy of using these tools, compared to current manual digitalization processes.","PeriodicalId":187896,"journal":{"name":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cisti54924.2022.9820135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The digital transformation of organizations has become critical for their survival. Smaller organizations, and especially those in developing countries, are facing bigger challenges in this process due to limited resources and lack of digital skills. One of the keys of this transformation is the digitalization of information, where optical character recognition (OCR) plays an essential role. This research analyzes current OCR tools and systems for document digitalization in low-resources organizations and presents a semi-automatic document processing and text-recognition solution that addresses their needs. The study then presents an experimental design to assess the efficiency of the tool. The results support the adequacy of using these tools, compared to current manual digitalization processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向低资源组织数字化转型的半自动文档处理和文本识别
组织的数字化转型已成为其生存的关键。由于资源有限和缺乏数字技能,规模较小的组织,特别是发展中国家的组织,在这一过程中面临着更大的挑战。这种转变的关键之一是信息的数字化,其中光学字符识别(OCR)起着至关重要的作用。本研究分析了低资源组织中当前用于文档数字化的OCR工具和系统,并提出了一种半自动文档处理和文本识别解决方案,以满足他们的需求。该研究随后提出了一个实验设计来评估该工具的效率。与目前的人工数字化流程相比,结果支持使用这些工具的充分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic regions detection in CT images based on Haralick textures Contribution of Industry 4.0 Technologies to Social Responsibility and Sustainability Digital marketing of Sarumaky handicrafts Monitoring the evolution of Gender Equality Index in Europe: dashboard proposal Maximising ERP capabilities in order to preparate Consolidated Financial Statements- a practical application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1