Affordance detection with Dynamic-Tree Capsule Networks

A. Rodr'iguez-S'anchez, Simon Haller-Seeber, David Peer, Chris Engelhardt, Jakob Mittelberger, Matteo Saveriano
{"title":"Affordance detection with Dynamic-Tree Capsule Networks","authors":"A. Rodr'iguez-S'anchez, Simon Haller-Seeber, David Peer, Chris Engelhardt, Jakob Mittelberger, Matteo Saveriano","doi":"10.1109/Humanoids53995.2022.10000190","DOIUrl":null,"url":null,"abstract":"Affordance detection from visual input is a fundamental step in autonomous robotic manipulation. Existing solutions to the problem of affordance detection rely on convolutional neural networks. However, these networks do not consider the spatial arrangement of the input data and miss parts-to-whole relationships. Therefore, they fall short when confronted with novel, previously unseen object instances or new viewpoints. One solution to overcome such limitations can be to resort to capsule networks. In this paper, we introduce the first affordance detection network based on dynamic treestructured capsules for sparse 3D point clouds. We show that our capsule-based network outperforms current state-of-the-art models on viewpoint invariance and parts-segmentation of new object instances through a novel dataset we only used for evaluation and it is publicly available from github.com/gipfelen/DTCG-Net. In the experimental evaluation we will show that our algorithm is superior to current affordance detection methods when faced with grasping previously unseen objects thanks to our Capsule Network enforcing a parts-to-whole representation.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Affordance detection from visual input is a fundamental step in autonomous robotic manipulation. Existing solutions to the problem of affordance detection rely on convolutional neural networks. However, these networks do not consider the spatial arrangement of the input data and miss parts-to-whole relationships. Therefore, they fall short when confronted with novel, previously unseen object instances or new viewpoints. One solution to overcome such limitations can be to resort to capsule networks. In this paper, we introduce the first affordance detection network based on dynamic treestructured capsules for sparse 3D point clouds. We show that our capsule-based network outperforms current state-of-the-art models on viewpoint invariance and parts-segmentation of new object instances through a novel dataset we only used for evaluation and it is publicly available from github.com/gipfelen/DTCG-Net. In the experimental evaluation we will show that our algorithm is superior to current affordance detection methods when faced with grasping previously unseen objects thanks to our Capsule Network enforcing a parts-to-whole representation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态树胶囊网络的可视性检测
视觉输入的可视性检测是机器人自主操作的基本步骤。现有的可用性检测方法依赖于卷积神经网络。然而,这些网络没有考虑输入数据的空间排列,忽略了部分到整体的关系。因此,当面对新奇的、以前未见过的对象实例或新的观点时,它们就会失败。克服这种限制的一个解决方案是使用胶囊网络。本文首次提出了基于动态树状结构胶囊的稀疏三维点云可视性检测网络。我们表明,我们基于胶囊的网络在视点不变性和新对象实例的部件分割方面优于当前最先进的模型,通过我们仅用于评估的新数据集,该数据集可从github.com/gipfelen/DTCG-Net公开获得。在实验评估中,我们将证明我们的算法在面对抓取以前未见过的物体时优于当前的可视性检测方法,这要归功于我们的胶囊网络执行了部分到整体的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Patient- and Teleoperator-led Robotic Physiotherapy via Strain Map Segmentation and Shared-authority Self-Contained Calibration of an Elastic Humanoid Upper Body Using Only a Head-Mounted RGB Camera Self-collision avoidance in bimanual teleoperation using CollisionIK: algorithm revision and usability experiment Bimanual Manipulation Workspace Analysis of Humanoid Robots with Object Specific Coupling Constraints A Dexterous, Adaptive, Affordable, Humanlike Robot Hand: Towards Prostheses with Dexterous Manipulation Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1