Radiation Pattern Diversified Double-Fluid-Channel Surface-Wave Antenna for Mobile Communications

Yuanjun Shen, K. Tong, Kai‐Kit Wong
{"title":"Radiation Pattern Diversified Double-Fluid-Channel Surface-Wave Antenna for Mobile Communications","authors":"Yuanjun Shen, K. Tong, Kai‐Kit Wong","doi":"10.1109/APWC49427.2022.9899924","DOIUrl":null,"url":null,"abstract":"In this paper, we present an antenna design for millimeter wave 5G applications. The proposed antenna has a wide working frequency range from 23.5 GHz to 36.5 GHz. This can cover the millimeter wave 5G frequency band in most countries. The design is simple and will mitigate the difficulty when implementing in a wireless system with reconfigurable capability. The antenna design only needs a single RF port as input to achieve radiation pattern diversity by moving the fluid radiators in its two channels. With the radiation pattern diversity capability, the problem like weak signal strength and inter channel interference can be eased.The design shows higher dynamic range of patterns turning when compare to the previous work on single-channel surface-wave antenna with the purpose of wider angular coverage with multichannel design. The comparison result of the two designs will also be provided in this paper.","PeriodicalId":422168,"journal":{"name":"2022 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC49427.2022.9899924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present an antenna design for millimeter wave 5G applications. The proposed antenna has a wide working frequency range from 23.5 GHz to 36.5 GHz. This can cover the millimeter wave 5G frequency band in most countries. The design is simple and will mitigate the difficulty when implementing in a wireless system with reconfigurable capability. The antenna design only needs a single RF port as input to achieve radiation pattern diversity by moving the fluid radiators in its two channels. With the radiation pattern diversity capability, the problem like weak signal strength and inter channel interference can be eased.The design shows higher dynamic range of patterns turning when compare to the previous work on single-channel surface-wave antenna with the purpose of wider angular coverage with multichannel design. The comparison result of the two designs will also be provided in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于移动通信的辐射方向图多样化双流道表面波天线
在本文中,我们提出了毫米波5G应用的天线设计。该天线工作频率范围为23.5 GHz ~ 36.5 GHz。这可以覆盖大多数国家的毫米波5G频段。该设计简单,可降低在具有可重构能力的无线系统中实现的难度。该天线设计只需要一个射频端口作为输入,通过移动其两个通道中的流体散热器来实现辐射方向图分集。利用辐射方向图分集能力,可以缓解信号强度弱、信道间干扰等问题。与以往的单通道表面波天线相比,该设计具有更高的方向图转向动态范围,并采用多通道设计实现了更宽的角度覆盖。本文还将给出两种设计方案的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rod Antenna for 28-GHz Band Operation Improvement of gain in compact antipodal Vivaldi antenna The Rectenna Array for Minecart Fed by Leaky Wave Waveguide for Microwave Snow Melting A High-Gain Quasi-Fractal Antenna with Wide Range Operation for 5G Applications over V-Band Spectrum Equilateral Triangular Slot-based Planar Rectangular Antenna for Millimeter-wave Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1