Joint Network-Source Video Coding Based on Lagrangian Rate Allocation

Xuguang Lan, Nanning Zheng, Jianru Xue, Ce Li, Songlin Zhao
{"title":"Joint Network-Source Video Coding Based on Lagrangian Rate Allocation","authors":"Xuguang Lan, Nanning Zheng, Jianru Xue, Ce Li, Songlin Zhao","doi":"10.1109/DCC.2009.5","DOIUrl":null,"url":null,"abstract":"Joint network-source video coding (JNSC) is targeted to achieve the optimum delivery of a video source to a number of destinations over network with capacity constraints. In this paper, a practical scalable multiple description coding is proposed for JNSC, based on Lagrangian rate allocation and scalable video coding. After the spatiotemporal wavelet transformation of input video sequence and the bit plane coding and context-based adaptive binary arithmetic coding, jointing network-source coding is performed on the coding passes of the code blocks using Lagrangian rate allocation. The principle relationship of the rate-distortion slop ratio with receiving probability in network links is derived under the link capacity constraints. In this way, scalable multiple descriptions can be generated to optimize the delivery to be robust and adaptive to the dynamics of heterogeneous networks. The performance of the proposed scalable multiple description coding is explored in the Peer-to-Peer streaming network.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Joint network-source video coding (JNSC) is targeted to achieve the optimum delivery of a video source to a number of destinations over network with capacity constraints. In this paper, a practical scalable multiple description coding is proposed for JNSC, based on Lagrangian rate allocation and scalable video coding. After the spatiotemporal wavelet transformation of input video sequence and the bit plane coding and context-based adaptive binary arithmetic coding, jointing network-source coding is performed on the coding passes of the code blocks using Lagrangian rate allocation. The principle relationship of the rate-distortion slop ratio with receiving probability in network links is derived under the link capacity constraints. In this way, scalable multiple descriptions can be generated to optimize the delivery to be robust and adaptive to the dynamics of heterogeneous networks. The performance of the proposed scalable multiple description coding is explored in the Peer-to-Peer streaming network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于拉格朗日速率分配的联合网络源视频编码
联合网络源视频编码(JNSC)的目标是在容量受限的网络上实现视频源到多个目的地的最佳传输。本文提出了一种实用的基于拉格朗日速率分配和可扩展视频编码的JNSC可扩展多描述编码方法。在对输入视频序列进行时空小波变换、位平面编码和基于上下文的自适应二进制算术编码后,利用拉格朗日速率分配对码块的编码通道进行连接网络源编码。在链路容量约束下,导出了网络链路中速率畸变斜率比与接收概率的基本关系。通过这种方式,可以生成可伸缩的多个描述,以优化交付,使其健壮并适应异构网络的动态。研究了所提出的可扩展多描述编码在点对点流网络中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1