Complex systems and ‘‘Spatio -Temporal Anti-Compliance Coordination’’ In cyber-physical networks: A critique of the Hipster Effect, bankruptcy prediction and alternative risk premia

IF 1.2 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Cognitive Computation and Systems Pub Date : 2021-08-28 DOI:10.1049/ccs2.12029
Michael I. C. Nwogugu
{"title":"Complex systems and ‘‘Spatio -Temporal Anti-Compliance Coordination’’ In cyber-physical networks: A critique of the Hipster Effect, bankruptcy prediction and alternative risk premia","authors":"Michael I. C. Nwogugu","doi":"10.1049/ccs2.12029","DOIUrl":null,"url":null,"abstract":"<p>The <i>Hipster Effect</i> is a group of evolutionary ‘‘<i>Diffusive Learning</i>’’ processes of networks of individuals and groups (and their communication devices) that form <i>Cyber-Physical Systems</i>; and the <i>Hipster Effect</i> theory has potential applications in many fields of research. This study addresses decision-making parameters in machine-learning algorithms, and more specifically, critiques the explanations for the <i>Hipster Effect</i>, and discusses the implications for portfolio management and corporate bankruptcy prediction (two areas where AI has been used extensively). The methodological approach in this study is entirely theoretical analysis. The main findings are as follows: (i) the <i>Hipster Effect</i> theory and associated mathematical models are flawed; (ii) some decision-making and learning models in machine-learning algorithms are flawed; (iii) but regardless of whether or not the <i>Hipster Effect</i> theory is correct, it can be used to develop portfolio management models, some of which are summarised herein; (iv) the [1] corporate bankruptcy prediction model can also be used for portfolio-selection (stocks and bonds).</p>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs2.12029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs2.12029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Hipster Effect is a group of evolutionary ‘‘Diffusive Learning’’ processes of networks of individuals and groups (and their communication devices) that form Cyber-Physical Systems; and the Hipster Effect theory has potential applications in many fields of research. This study addresses decision-making parameters in machine-learning algorithms, and more specifically, critiques the explanations for the Hipster Effect, and discusses the implications for portfolio management and corporate bankruptcy prediction (two areas where AI has been used extensively). The methodological approach in this study is entirely theoretical analysis. The main findings are as follows: (i) the Hipster Effect theory and associated mathematical models are flawed; (ii) some decision-making and learning models in machine-learning algorithms are flawed; (iii) but regardless of whether or not the Hipster Effect theory is correct, it can be used to develop portfolio management models, some of which are summarised herein; (iv) the [1] corporate bankruptcy prediction model can also be used for portfolio-selection (stocks and bonds).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络物理网络中的复杂系统和“时空反合规协调”:对潮人效应、破产预测和替代风险溢价的批判
潮人效应是一组进化的“扩散学习”过程的网络的个人和团体(和他们的通信设备),形成网络物理系统;潮人效应理论在许多研究领域都有潜在的应用。本研究解决了机器学习算法中的决策参数,更具体地说,批评了对潮人效应的解释,并讨论了对投资组合管理和企业破产预测的影响(人工智能已被广泛使用的两个领域)。本研究的方法论完全是理论分析。主要发现如下:(1)“潮人效应”理论及其数学模型存在缺陷;(ii)机器学习算法中的一些决策和学习模型存在缺陷;(iii)但不管Hipster效应理论是否正确,它都可以用来开发投资组合管理模型,本文对其中的一些模型进行了总结;(iv)[1]公司破产预测模型也可用于投资组合选择(股票和债券)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Computation and Systems
Cognitive Computation and Systems Computer Science-Computer Science Applications
CiteScore
2.50
自引率
0.00%
发文量
39
审稿时长
10 weeks
期刊最新文献
EF-CorrCA: A multi-modal EEG-fNIRS subject independent model to assess speech quality on brain activity using correlated component analysis Detection of autism spectrum disorder using multi-scale enhanced graph convolutional network Evolving usability heuristics for visualising Augmented Reality/Mixed Reality applications using cognitive model of information processing and fuzzy analytical hierarchy process Emotion classification with multi-modal physiological signals using multi-attention-based neural network Optimisation of deep neural network model using Reptile meta learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1