A transaction-based temporal data model that supports prediction in real-time databases

M. Bodlaender, P. V. D. Stok
{"title":"A transaction-based temporal data model that supports prediction in real-time databases","authors":"M. Bodlaender, P. V. D. Stok","doi":"10.1109/EMWRTS.1998.685085","DOIUrl":null,"url":null,"abstract":"The authors propose database support for large sets of temporal, real-time data. Prediction models are supported: transactions can write data items to the database that have been \"measured in the future\". Therefore, it is necessary to allow multiple instances of the same data item, with different times of measurement. This requires larger storage requirements, but can also be used for interpolation of intermediate values, and extrapolation of future values. It is recognized that temporal correctness of data is a characteristic of the usage of the data item. Real-time data requirements are specified for each individual transaction, rather than for each data item. Transactions can access multiple instances of the same data item (for extrapolation purposes), and can specify separate temporal constraints for each accessed instance. An implementation of a hard-real-time database that realizes these requirements is given, to show that the specified requirements are realistic.","PeriodicalId":318810,"journal":{"name":"Proceeding. 10th EUROMICRO Workshop on Real-Time Systems (Cat. No.98EX168)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding. 10th EUROMICRO Workshop on Real-Time Systems (Cat. No.98EX168)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMWRTS.1998.685085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The authors propose database support for large sets of temporal, real-time data. Prediction models are supported: transactions can write data items to the database that have been "measured in the future". Therefore, it is necessary to allow multiple instances of the same data item, with different times of measurement. This requires larger storage requirements, but can also be used for interpolation of intermediate values, and extrapolation of future values. It is recognized that temporal correctness of data is a characteristic of the usage of the data item. Real-time data requirements are specified for each individual transaction, rather than for each data item. Transactions can access multiple instances of the same data item (for extrapolation purposes), and can specify separate temporal constraints for each accessed instance. An implementation of a hard-real-time database that realizes these requirements is given, to show that the specified requirements are realistic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于事务的时态数据模型,支持实时数据库中的预测
作者建议数据库支持大的时间、实时数据集。支持预测模型:事务可以将“在未来测量”的数据项写入数据库。因此,有必要允许同一数据项具有不同测量时间的多个实例。这需要更大的存储需求,但也可以用于中间值的插值和未来值的外推。人们认识到,数据的时间正确性是数据项使用的一个特征。实时数据需求是为每个事务指定的,而不是为每个数据项指定的。事务可以访问同一数据项的多个实例(出于推断的目的),并且可以为每个被访问的实例指定单独的时间约束。给出了一个实现这些要求的硬实时数据库的实现,以表明指定的要求是现实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-line schedulers for pinwheel tasks using the time-driven approach Scheduling algorithm for hard real-time communication in demand priority network XTG-an engineering approach to modelling and analysis of real-time systems Routing and admission control of real-time channels Investigation of the pessimism in distributed systems timing analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1