On the limitation of convex optimization for sparse signal segmentation

P. Rajmic, Michaela Novosadová
{"title":"On the limitation of convex optimization for sparse signal segmentation","authors":"P. Rajmic, Michaela Novosadová","doi":"10.1109/TSP.2016.7760941","DOIUrl":null,"url":null,"abstract":"We show that convex optimization methods have fundamental properties that complicate performing signal segmentation based on sparsity assumptions. We review the recently introduced overcomplete sparse segmentation model, we perform experiments revealing the limits, and we explain this behaviour. We also propose modifications and alternatives.","PeriodicalId":159773,"journal":{"name":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 39th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2016.7760941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We show that convex optimization methods have fundamental properties that complicate performing signal segmentation based on sparsity assumptions. We review the recently introduced overcomplete sparse segmentation model, we perform experiments revealing the limits, and we explain this behaviour. We also propose modifications and alternatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏信号分割中凸优化的局限性
我们表明,凸优化方法具有使基于稀疏性假设的信号分割变得复杂的基本特性。我们回顾了最近引入的过完全稀疏分割模型,我们进行了揭示限制的实验,并解释了这种行为。我们也提出修改和替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finger-Knuckle-print recognition using dynamic thresholds completed local binary pattern descriptor Gabor filter bank-based GEI features for human Gait recognition Robust model-free gait recognition by statistical dependency feature selection and Globality-Locality Preserving Projections 2D log-Gabor filters for competitive coding-based multi-spectral palmprint recognition Enhanced Ultrawideband LOS sufficiency positioning and mitigation for cognitive 5G wireless setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1