Classifying Course Discussion Board Questions using LLMs

Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang
{"title":"Classifying Course Discussion Board Questions using LLMs","authors":"Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang","doi":"10.1145/3587103.3594202","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.","PeriodicalId":366365,"journal":{"name":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587103.3594202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用法学硕士对课程讨论板问题进行分类
大型语言模型(llm)可以用来回答课程讨论板上的学生问题,但是llm回答他们无法解决的问题是有风险的。我们提出并评估了一个基于法学硕士的系统,该系统将学生的问题分为四种类型:概念性、作业性、逻辑性和不可回答性。然后,我们使用特定于类型的提示符提示LLM。使用GPT-3,我们在四个类别中实现了81%的分类准确率。此外,我们对不可回答问题的分类准确率达到93%。这表明我们的制度有效地忽略了它无法解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward AI-infused Game Design Activities for Rural Middle Grades Students Translate Together: Managed Translation and Peer-Review Automatic Feedback During Coding Exams: Curse or Blessing? Technocamps: Highlighting 20 Years of Transforming Digital Education in Wales Understanding Computer Science Teacher Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1