Capacity Analysis for Hybrid Beamforming MIMO Channel using Discrete Cosine Transform and Antenna Selection

A. S. Arifin
{"title":"Capacity Analysis for Hybrid Beamforming MIMO Channel using Discrete Cosine Transform and Antenna Selection","authors":"A. S. Arifin","doi":"10.1109/ICoSTA48221.2020.1570613216","DOIUrl":null,"url":null,"abstract":"The user expects a new level of experience for 5G services. One of them is high data rates that can deliver smooth high definition streaming in mobility. There have been so many efforts to increase throughput per user. The Massive Multiple Input Multiple Output (MMIMO) is one of the technology enablers in 5G. However, implementing MMIMO requires a large number of antennas and costly Radio Frequency (RF) chains as well. To reduce the large number of RF chains, the beamforming technique can be considered. This paper proposes hybrid beamforming using a Discrete Cosine Transform (DCT). We put the DCT matrix in front of RF chain. Moreover, the transmitted signals may experience correlation due to adjacent antenna spacing that can deteriorate the capacity. Hence, we propose an antenna selection to maintain the capacity. We conduct simulations over a thousand number of channel realizations. We show that the capacity increases by using DCT rather than DFT. Furthermore, the antenna selection performs well over the random selection.","PeriodicalId":375166,"journal":{"name":"2020 International Conference on Smart Technology and Applications (ICoSTA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technology and Applications (ICoSTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoSTA48221.2020.1570613216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The user expects a new level of experience for 5G services. One of them is high data rates that can deliver smooth high definition streaming in mobility. There have been so many efforts to increase throughput per user. The Massive Multiple Input Multiple Output (MMIMO) is one of the technology enablers in 5G. However, implementing MMIMO requires a large number of antennas and costly Radio Frequency (RF) chains as well. To reduce the large number of RF chains, the beamforming technique can be considered. This paper proposes hybrid beamforming using a Discrete Cosine Transform (DCT). We put the DCT matrix in front of RF chain. Moreover, the transmitted signals may experience correlation due to adjacent antenna spacing that can deteriorate the capacity. Hence, we propose an antenna selection to maintain the capacity. We conduct simulations over a thousand number of channel realizations. We show that the capacity increases by using DCT rather than DFT. Furthermore, the antenna selection performs well over the random selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离散余弦变换和天线选择的混合波束形成MIMO信道容量分析
用户期望5G服务的体验达到一个新的水平。其中之一是高数据速率,可以在移动中提供流畅的高清流。为了提高每个用户的吞吐量,已经做了很多努力。大规模多输入多输出(MMIMO)是5G的技术推动者之一。然而,实现mimo也需要大量的天线和昂贵的射频(RF)链。为了减少大量的射频链,可以考虑采用波束形成技术。提出了一种基于离散余弦变换(DCT)的混合波束形成方法。我们把DCT矩阵放在射频链的前面。此外,由于相邻的天线间距会降低容量,传输的信号可能会经历相关。因此,我们提出了一种天线选择来保持容量。我们对一千多个信道实现进行了模拟。我们证明了使用DCT而不是DFT可以增加容量。此外,天线选择优于随机选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Tourism Destinations Rating System Using 6AsTD Framework and Blockchain ICoSTA 2020 Table of Contents IoT Based: Improving Control System For High-Quality Beef in Supermarkets Analysis of Power Transactions on the Integrated Solar Home System A Fuzzy Servqual Method for Evaluated Umrah Service Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1