Data Quality Measures and Data Cleaning for Pattern Analysis Angkot Transportation in Bandung City

Nasy’an Taufiq Al Ghifari, Ary Setijadi Prihatmanto, Rifki Wijaya, Rahadian Yusuf
{"title":"Data Quality Measures and Data Cleaning for Pattern Analysis Angkot Transportation in Bandung City","authors":"Nasy’an Taufiq Al Ghifari, Ary Setijadi Prihatmanto, Rifki Wijaya, Rahadian Yusuf","doi":"10.1109/ICoSTA48221.2020.1570613756","DOIUrl":null,"url":null,"abstract":"Detecting and repairing ‘dirty’ data is one of the perennial challenges in data analytics, and failure to do so can result in inaccurate analytics and unreliable decisions. To detect errors at an early stage and handle them efficiently, it is necessary to determine steps for cleaning and improving data quality. The data used in this study are data collected from previous studies. Data is collected through two sources, namely the Angkot mobile application and the GPS tracker microcontroller module. Some data cleaning tasks here are performed for geospatial data types. This paper provides an overview of data cleaning problems, data quality, cleaning approaches and requirements for public transportation pattern analysis.","PeriodicalId":375166,"journal":{"name":"2020 International Conference on Smart Technology and Applications (ICoSTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technology and Applications (ICoSTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoSTA48221.2020.1570613756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detecting and repairing ‘dirty’ data is one of the perennial challenges in data analytics, and failure to do so can result in inaccurate analytics and unreliable decisions. To detect errors at an early stage and handle them efficiently, it is necessary to determine steps for cleaning and improving data quality. The data used in this study are data collected from previous studies. Data is collected through two sources, namely the Angkot mobile application and the GPS tracker microcontroller module. Some data cleaning tasks here are performed for geospatial data types. This paper provides an overview of data cleaning problems, data quality, cleaning approaches and requirements for public transportation pattern analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
万隆市Angkot交通模式分析的数据质量措施和数据清理
检测和修复“脏”数据是数据分析中长期存在的挑战之一,如果不这样做,可能会导致不准确的分析和不可靠的决策。为了在早期阶段检测错误并有效地处理它们,有必要确定清理和提高数据质量的步骤。本研究使用的数据来自以往的研究。数据通过两个来源收集,即Angkot移动应用程序和GPS跟踪器微控制器模块。这里针对地理空间数据类型执行一些数据清理任务。本文概述了公共交通模式分析的数据清洗问题、数据质量、清洗方法和要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Tourism Destinations Rating System Using 6AsTD Framework and Blockchain ICoSTA 2020 Table of Contents IoT Based: Improving Control System For High-Quality Beef in Supermarkets Analysis of Power Transactions on the Integrated Solar Home System A Fuzzy Servqual Method for Evaluated Umrah Service Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1