Correcting an Error in Some Interpretations of Atmospheric 14C Data

D. E. Andrews
{"title":"Correcting an Error in Some Interpretations of Atmospheric 14C Data","authors":"D. E. Andrews","doi":"10.11648/j.earth.20200904.12","DOIUrl":null,"url":null,"abstract":"The variable “∆14C”, commonly used in radiocarbon dating and tracing applications to quantify 14C levels, is a measure of the ratio of the radioisotope 14C to other carbon in a sample. After atmospheric nuclear testing in the 1950’s and 1960’s nearly doubled atmospheric 14C, the later evolution of ∆14C allowed insights into the dynamics of carbon exchange between the atmosphere and terrestrial and marine sinks. But a few authors without backgrounds in isotope measurements have confused ∆14C with excess 14C concentration. They erroneously interpret the present recovery of ∆14C to near its pre bomb test value as evidence that atmospheric 14C concentration has returned to its earlier value. From this they reach further incorrect conclusions about the fate of anthropogenic CO2 introduced into the atmosphere by fossil fuel burning. An estimate of the true time dependence of atmospheric 14C concentration over the past century, calculated from averaged atmospheric ∆14C and CO2 data is presented. The data show that 14C concentrations remain over 30% above 1950 values, and have begun to increase, even as ∆14C continues to fall. This confirms the prediction of a conventional model of the carbon cycle. The unconventional models of carbon dynamics motivated by the mistake, on the other hand, are excluded by the properly interpreted 14C data.","PeriodicalId":350455,"journal":{"name":"Eearth","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eearth","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.earth.20200904.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The variable “∆14C”, commonly used in radiocarbon dating and tracing applications to quantify 14C levels, is a measure of the ratio of the radioisotope 14C to other carbon in a sample. After atmospheric nuclear testing in the 1950’s and 1960’s nearly doubled atmospheric 14C, the later evolution of ∆14C allowed insights into the dynamics of carbon exchange between the atmosphere and terrestrial and marine sinks. But a few authors without backgrounds in isotope measurements have confused ∆14C with excess 14C concentration. They erroneously interpret the present recovery of ∆14C to near its pre bomb test value as evidence that atmospheric 14C concentration has returned to its earlier value. From this they reach further incorrect conclusions about the fate of anthropogenic CO2 introduced into the atmosphere by fossil fuel burning. An estimate of the true time dependence of atmospheric 14C concentration over the past century, calculated from averaged atmospheric ∆14C and CO2 data is presented. The data show that 14C concentrations remain over 30% above 1950 values, and have begun to increase, even as ∆14C continues to fall. This confirms the prediction of a conventional model of the carbon cycle. The unconventional models of carbon dynamics motivated by the mistake, on the other hand, are excluded by the properly interpreted 14C data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正大气14C资料某些解释中的错误
变量“∆14C”通常用于放射性碳定年和追踪应用中,以量化14C水平,它是样品中放射性同位素14C与其他碳的比率的量度。在20世纪50年代和60年代的大气核试验之后,大气中的14C几乎翻了一番,后来的变化使得人们能够深入了解大气与陆地和海洋汇之间碳交换的动态。但是一些没有同位素测量背景的作者混淆了∆14C和过量的14C浓度。他们错误地将目前的∆14C恢复到接近核弹试验前的值,解释为大气中14C浓度已恢复到早先值的证据。由此,他们对燃烧化石燃料排放到大气中的人为二氧化碳的命运得出了进一步的错误结论。本文给出了根据平均大气∆14C和CO2数据计算的过去一个世纪大气14C浓度的真实时间依赖性的估计。数据显示,14C浓度仍然比1950年的值高出30%以上,并且已经开始增加,即使∆14C继续下降。这证实了传统碳循环模型的预测。另一方面,由错误引发的非常规碳动力学模型被正确解释的14C数据排除在外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soil Sensitivity to Wind and Water Erosion as Affected by Land Use in Southern Iran Lake Watershed Dynamics and Bathymetry Modeling of Rara and Begnas Lakes in Nepal Vulnerability of Soil Carbon Regulating Ecosystem Services due to Land Cover Change in the State of New Hampshire, USA Mapping the Alteration Zones for Uranium Exploration in Gabal Abu Garadi Area Central Eastern Desert, Egypt, Using Aster Data FischerLab: An Application for Generating Fischer Plots and Dynamic Fischer Plots from Wireline Well-Logs and Stratigraphic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1