$\mathcal{LAJA}{-}$ Label Attention Transformer Architectures for ICD-10 Coding of Unstructured Clinical Notes

V. Mayya, Sowmya S Kamath, V. Sugumaran
{"title":"$\\mathcal{LAJA}{-}$ Label Attention Transformer Architectures for ICD-10 Coding of Unstructured Clinical Notes","authors":"V. Mayya, Sowmya S Kamath, V. Sugumaran","doi":"10.1109/CIBCB49929.2021.9562815","DOIUrl":null,"url":null,"abstract":"Effective code assignment for patient clinical records in a hospital plays a significant role in the process of standardizing medical records, mainly for streamlining clinical care delivery, billing, and managing insurance claims. The current practice employed is manual coding, usually carried out by trained medical coders, making the process subjective, error-prone, inexact, and time-consuming. To alleviate this cost-intensive process, intelligent coding systems built on patients' structured electronic medical records are critical. Classification of medical diagnostic codes, like ICD-10, is widely employed to categorize patients' clinical conditions and associated diagnoses. In this work, we present a neural model $\\mathcal{LAJA}$, built on Label Attention Transformer Architectures for automatic assignment of ICD-10 codes. Our work is benchmarked on the CodiEsp dataset, a dataset for automatic clinical coding systems for multilingual medical documents, used in the eHealth CLEF 2020-Multilingual Information Extraction Shared Task. The experimental results reveal that the proposed $\\mathcal{LAJA}$ variants outperform their basic BERT counterparts by 33-49% in terms of standard metrics like precision, recall, F1-score and mean average precision. The label attention mechanism also enables direct extraction of textual evidence in medical documents that map to the clinical ICD-10 diagnostic codes.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Effective code assignment for patient clinical records in a hospital plays a significant role in the process of standardizing medical records, mainly for streamlining clinical care delivery, billing, and managing insurance claims. The current practice employed is manual coding, usually carried out by trained medical coders, making the process subjective, error-prone, inexact, and time-consuming. To alleviate this cost-intensive process, intelligent coding systems built on patients' structured electronic medical records are critical. Classification of medical diagnostic codes, like ICD-10, is widely employed to categorize patients' clinical conditions and associated diagnoses. In this work, we present a neural model $\mathcal{LAJA}$, built on Label Attention Transformer Architectures for automatic assignment of ICD-10 codes. Our work is benchmarked on the CodiEsp dataset, a dataset for automatic clinical coding systems for multilingual medical documents, used in the eHealth CLEF 2020-Multilingual Information Extraction Shared Task. The experimental results reveal that the proposed $\mathcal{LAJA}$ variants outperform their basic BERT counterparts by 33-49% in terms of standard metrics like precision, recall, F1-score and mean average precision. The label attention mechanism also enables direct extraction of textual evidence in medical documents that map to the clinical ICD-10 diagnostic codes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$\mathcal{LAJA}{-}$用于非结构化临床记录ICD-10编码的标签注意力转换器架构
医院中患者临床记录的有效代码分配在医疗记录标准化过程中起着重要作用,主要是为了简化临床护理交付、计费和管理保险索赔。目前采用的做法是手动编码,通常由训练有素的医疗编码人员执行,这使得该过程主观、容易出错、不准确且耗时。为了减轻这一成本密集的过程,建立在患者结构化电子病历基础上的智能编码系统至关重要。医学诊断代码分类,如ICD-10,被广泛用于对患者的临床状况和相关诊断进行分类。在这项工作中,我们提出了一个神经模型$\mathcal{LAJA}$,建立在标签注意力转换器架构上,用于ICD-10代码的自动分配。我们的工作以CodiEsp数据集为基准,CodiEsp数据集是用于多语言医疗文档的自动临床编码系统的数据集,用于eHealth CLEF 2020-多语言信息提取共享任务。实验结果表明,在精度、召回率、f1分数和平均精度等标准指标上,提出的$\mathcal{LAJA}$变体比基本BERT变体高出33-49%。标签注意机制还可以直接提取与ICD-10临床诊断代码相对应的医疗文件中的文本证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ring Optimization of Epidemic Contact Networks A Comparison of Novel Representations for Evolving Epidemic Networks Multi-distance based spectral embedding fusion for clustering single-cell methylation data Predicting Influenza A Viral Host Using PSSM and Word Embeddings Identification of Genes Associated with Alzheimer's Disease using Evolutionary Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1