Autonomous Lending Organization on Ethereum with Credit Scoring

Thomas H. Austin, Katerina Potika, C. Pollett
{"title":"Autonomous Lending Organization on Ethereum with Credit Scoring","authors":"Thomas H. Austin, Katerina Potika, C. Pollett","doi":"10.1109/SVCC56964.2023.10164922","DOIUrl":null,"url":null,"abstract":"We propose the Autonomous Lending Organization on Ethereum (ALOE) system, which enables unsecured borrowing of funds on Ethereum. We incorporate a credit scoring approach that extends in the DeFi world the one that is used by traditional banks in order to quantify the risk of a borrower defaulting on a loan. As part of the loan process, first, we have a registration phase, where a notary verifies the real identity of a borrower and delegates to a set of auditors the task of storing a share of the real identity of a borrower to an Ethereum account while preserving anonymity. In the next phase, the Credit Bureau Smart Contract connects lenders to borrowers and updates credit scores. We automatically compute and update credit scores on-chain using the k-nearest neighbors algorithm.","PeriodicalId":243155,"journal":{"name":"2023 Silicon Valley Cybersecurity Conference (SVCC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Silicon Valley Cybersecurity Conference (SVCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SVCC56964.2023.10164922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose the Autonomous Lending Organization on Ethereum (ALOE) system, which enables unsecured borrowing of funds on Ethereum. We incorporate a credit scoring approach that extends in the DeFi world the one that is used by traditional banks in order to quantify the risk of a borrower defaulting on a loan. As part of the loan process, first, we have a registration phase, where a notary verifies the real identity of a borrower and delegates to a set of auditors the task of storing a share of the real identity of a borrower to an Ethereum account while preserving anonymity. In the next phase, the Credit Bureau Smart Contract connects lenders to borrowers and updates credit scores. We automatically compute and update credit scores on-chain using the k-nearest neighbors algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有信用评分的以太坊自治借贷组织
我们提出了以太坊自治借贷组织(ALOE)系统,该系统可以在以太坊上无抵押借贷资金。我们采用了一种信用评分方法,这种方法在DeFi领域得到了扩展,传统银行使用这种方法来量化借款人拖欠贷款的风险。作为贷款流程的一部分,首先,我们有一个注册阶段,公证人验证借款人的真实身份,并委托一组审计员将借款人真实身份的一部分存储到以太坊账户,同时保持匿名。在下一阶段,信用局智能合约将连接贷方和借款人并更新信用评分。我们使用k近邻算法自动计算和更新链上的信用评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BlockNIC: SmartNIC assisted Blockchain HoneyContainer: Container-based Webshell Command Injection Defending and Backtracking Malware Detection through Contextualized Vector Embeddings Autonomous Lending Organization on Ethereum with Credit Scoring OFMCDM/IRF: A Phishing Website Detection Model based on Optimized Fuzzy Multi-Criteria Decision-Making and Improved Random Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1