Seng-Kyoun Jo, Lin Wang, J. Kangasharju, M. Mühlhäuser
{"title":"Eco-friendly Caching and Forwarding in Named Data Networking","authors":"Seng-Kyoun Jo, Lin Wang, J. Kangasharju, M. Mühlhäuser","doi":"10.1109/LANMAN49260.2020.9153230","DOIUrl":null,"url":null,"abstract":"Green networking, by making the network more energy efficient and helping reduce environmental impact, is receiving more and more attraction for sustainable ICT. In this paper, we propose a new green approach for Named Data Networking (NDN) where content requests and caching perform towards green content delivery. We design a forwarding and caching strategy, where we first define the greenness of nodes, a quantitative metric for measuring the environmental footprint of the network, based on which we identify corresponding green paths and encourage traffic to aggregate on green paths powered by more eco-friendly renewable energy. We validate our approach with a variety of simulations using real network topology and renewable energy datasets from the US, and the results show that applying the proposed green NDN achieves significant ecofriendly gains.","PeriodicalId":431494,"journal":{"name":"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LANMAN49260.2020.9153230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Green networking, by making the network more energy efficient and helping reduce environmental impact, is receiving more and more attraction for sustainable ICT. In this paper, we propose a new green approach for Named Data Networking (NDN) where content requests and caching perform towards green content delivery. We design a forwarding and caching strategy, where we first define the greenness of nodes, a quantitative metric for measuring the environmental footprint of the network, based on which we identify corresponding green paths and encourage traffic to aggregate on green paths powered by more eco-friendly renewable energy. We validate our approach with a variety of simulations using real network topology and renewable energy datasets from the US, and the results show that applying the proposed green NDN achieves significant ecofriendly gains.