Shengwei Xu, Nansen Lin, Dalei Wang, Wenjing Yu, W. Shi, Tingjun Jiang, Xinxia Cai
{"title":"A Dual Mode Neural Signal Recording System for synchronous neuroeletrical and neurochemical detection","authors":"Shengwei Xu, Nansen Lin, Dalei Wang, Wenjing Yu, W. Shi, Tingjun Jiang, Xinxia Cai","doi":"10.1109/NEMS.2013.6559772","DOIUrl":null,"url":null,"abstract":"This paper presents a 64-channel Dual Mode Neural Signal Recording System (DMNSRS) for detection of neuroeletrical and neurochemical signals. The DMNSRS comprises neurochemical recording module with current resolution of 1 pA and neuroelectricity recording module with voltage resolution of 0.3 μV. The two modules can work synchronously without mutual interference. In a global cerebral ischemia experiment, using Multi-Electrode Arrays (MEA) as neurobiological electrode and a single-walled carbon nanotube (SWNT)-modified glassy carbon electrode as neurochemical working electrode, the neuroelectrical and neurochemical signals are synchronously recorded by the DMNSRS in the Sprague-Dawley (SD) rat cortex.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a 64-channel Dual Mode Neural Signal Recording System (DMNSRS) for detection of neuroeletrical and neurochemical signals. The DMNSRS comprises neurochemical recording module with current resolution of 1 pA and neuroelectricity recording module with voltage resolution of 0.3 μV. The two modules can work synchronously without mutual interference. In a global cerebral ischemia experiment, using Multi-Electrode Arrays (MEA) as neurobiological electrode and a single-walled carbon nanotube (SWNT)-modified glassy carbon electrode as neurochemical working electrode, the neuroelectrical and neurochemical signals are synchronously recorded by the DMNSRS in the Sprague-Dawley (SD) rat cortex.