Bartlomiej Siniarski , Dinh Danh Le , Conor McArdle , John Murphy , Liam Barry
{"title":"DROAD: Demand-aware reconfigurable optically-switched agile data center network","authors":"Bartlomiej Siniarski , Dinh Danh Le , Conor McArdle , John Murphy , Liam Barry","doi":"10.1016/j.osn.2022.100683","DOIUrl":null,"url":null,"abstract":"<div><p>We present a Demand-aware Reconfigurable Data Center Network architecture design (DROAD) with integrated fast-switching optics and space switches that allows dynamic reconfiguration and separation of intra- and inter-cluster connections. The performance analysis results show a 64% improvement in average Flow Completion Time and a significant reduction in TCP session time, as well as a reduced number of sessions needed to be opened compared to traditional electrically-switched leaf-spine networks.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"45 ","pages":"Article 100683"},"PeriodicalIF":1.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1573427722000194/pdfft?md5=32aa7e9a5ab874a9ea29816212176c84&pid=1-s2.0-S1573427722000194-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427722000194","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a Demand-aware Reconfigurable Data Center Network architecture design (DROAD) with integrated fast-switching optics and space switches that allows dynamic reconfiguration and separation of intra- and inter-cluster connections. The performance analysis results show a 64% improvement in average Flow Completion Time and a significant reduction in TCP session time, as well as a reduced number of sessions needed to be opened compared to traditional electrically-switched leaf-spine networks.
期刊介绍:
Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time.
Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to:
• Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks
• Optical Data Center Networks
• Elastic optical networks
• Green Optical Networks
• Software Defined Optical Networks
• Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer)
• Optical Networks for Interet of Things (IOT)
• Home Networks, In-Vehicle Networks, and Other Short-Reach Networks
• Optical Access Networks
• Optical Data Center Interconnection Systems
• Optical OFDM and coherent optical network systems
• Free Space Optics (FSO) networks
• Hybrid Fiber - Wireless Networks
• Optical Satellite Networks
• Visible Light Communication Networks
• Optical Storage Networks
• Optical Network Security
• Optical Network Resiliance and Reliability
• Control Plane Issues and Signaling Protocols
• Optical Quality of Service (OQoS) and Impairment Monitoring
• Optical Layer Anycast, Broadcast and Multicast
• Optical Network Applications, Testbeds and Experimental Networks
• Optical Network for Science and High Performance Computing Networks