Simulated flight control using a hybrid neural network/genetic algorithm architecture

A. Langley, S. A. Barton, A. Markov
{"title":"Simulated flight control using a hybrid neural network/genetic algorithm architecture","authors":"A. Langley, S. A. Barton, A. Markov","doi":"10.1109/ETD.1995.403478","DOIUrl":null,"url":null,"abstract":"A controller for an agile, high-subsonic autonomous flight vehicle, incorporating neural network and genetic algorithm techniques, is presented. Simulated flight results for nominal and off-nominal vehicle configurations are reported. The results show that an inverse dynamic model neural network can offer better tracking performance and greater robustness than a conventional linear controller. However, the genetic algorithm technique employed here was found to offer no significant improvement in controller performance.<<ETX>>","PeriodicalId":302763,"journal":{"name":"Proceedings Electronic Technology Directions to the Year 2000","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Electronic Technology Directions to the Year 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETD.1995.403478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A controller for an agile, high-subsonic autonomous flight vehicle, incorporating neural network and genetic algorithm techniques, is presented. Simulated flight results for nominal and off-nominal vehicle configurations are reported. The results show that an inverse dynamic model neural network can offer better tracking performance and greater robustness than a conventional linear controller. However, the genetic algorithm technique employed here was found to offer no significant improvement in controller performance.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用混合神经网络/遗传算法体系结构模拟飞行控制
提出了一种结合神经网络和遗传算法的敏捷高亚音速自主飞行器控制器。报告了标称和非标称飞行器配置的模拟飞行结果。结果表明,与传统的线性控制器相比,逆动态模型神经网络具有更好的跟踪性能和鲁棒性。然而,本文采用的遗传算法技术在控制器性能方面没有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear adaptive techniques for DOA estimation-a comparative analysis Multiplicative noise cancellation (MNC) in analog VLSI vision sensors Optically powered isolated sensors General fuzzy clustering model and neural networks Evaluation of classification performance for randomly dithered carrier centre frequency in SAR systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1